Performance Report of Tohoku University Students' Projects Supported by Boeing Higher Education Program February 16th, 2023 15:15-15:30

Development of Data-Driven Science-Based Flow Field State Estimation Model and Flow Control Method

Nonomura, Ozawa, Nagata, Sasaki Lab.

<u>Yoshiki Anzai</u>

Hikaru Sugisaki

Chihaya Abe

Backgrounds

DSeparated Flow

➤Vibration and noise sources

□Feedback Control

Active control based on flow field <Previous Research>

Separated Flow

Attached Flow

 Feedback control of the flow around an airfoil based on pressure sensors by Plasma Actuator (Shimomuea et al., 2020)

Flow field-based feedback control can be effective

DProblems

➤The flow field data is huge

>It is difficult to measure the flow field in a real aircraft

Previous research

□ Proper Orthogonal Decomposition; POD

> Methods that can extract the main flow structures (Taira et al., 2017)

If low-dimensionalized spatial mode U_r is known, the flow field can be estimated by estimating Z

Previous research

➢Pressure sensors can be attached on actual fluid machinery

Real-time estimation and driving actuator are necessary for feedback control

Perform feedback control based on estimated flow field in real time, and investigate the effect of the feedback control

■Develop a system to estimate flow field and feedback control in real-time
■Feedback control based on estimated flow field
>Investigate the effect

Wind tunnel testing

DExperimental apparatus

Wind Tunnel	: T-BART
NACA0015 Airfoil model	
✓ Code length	: 100 mm
✓ Unsteady pressure sensors	: 8
✓ Static pressure sensors	: 18
Plasma actuator	
Compact RIO (cRIO-9047)	

DExperimental apparatus

Angle of Attack	: 16 deg
Flow Velocity	: 10m/s
$\geq Re \approx 6.7 \times 10^4$	

DSynchronous measurement

Sampling rate (PIV, Pressur	e) : 5kHz
-----------------------------	-----------

➤ measurement time : 1s

T-BART

• unsteady pressure sensor

Feedback control condition

DFlow Field Estimation, Control

Real-time estimation : 5 kHzFeedback control : 1 kHz

DPA driving voltage

Sine wave (Amplitude 8 kV, Frequency 10 kHz)

Control Law	PA driving condition
1	1 st mode's coefficient > 0
2	1 st mode's coefficient < 0
3	2 nd mode's coefficient > 0
4	2 nd mode's coefficient < 0

Result: Training data

The 1st mode and 2nd mode stand for the paired vortex structure

Result: Real-time estimation

>The flow structure is roughly estimated in real time

Feb. 16 2023

Result: The effect of feedback control

□The lift coefficient

□The pressure coefficient

>Law 1,3,4 : The aerodynamic performance was improved

Result: The effect of feedback control

- Real-time flow field estimation of 5 kHz and flow fieldbased feedback control of 1 kHz was achieved.
- Feedback on the vortex structure changed the vortex frequency and improved aerodynamic performance.