

Boeing Higher Education Project 2023

Multi-objective design optimization of

the multi-dispersed electric propulsion fan with regenerative air braking in a small passenger aircraft

Ryo Iijima^{1,2}, Shigeru Obayashi², Koji Shimoyama³

Department of Aerospace Engineering, Tohoku University, Sendai, Japan
 Institute of Fluid Science, Tohoku University
 Department of Mechanical Engineering, Kyushu University, Eukueka Japan

3 Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan

Background—<u>Carbon neutrality by 2050</u>

Scenarios for reducing CO2 emissions from *aircraft*[1]

Background—<u>Regenerative airbrake</u>

Background—<u>Regenerative airbrake system for small aircraft (JAXA, 2015)</u>

Adjusts angle of attack(θ) to switch between two states

However, regenerative airbrakes have not been applied to <u>fans with an invariable angle of attack</u> used in many passenger aircrafts

[2] Akira Nishizawa, et al. Flight demonstration of Electric Aircraft Technology for Harmonized Ecological Revolution (FEATHER)65.7, 2018

Background—<u>Regenerative airbrake system for passenger aircraft</u>

Adjusts rotation speed(ω) to switch between two states

Ideally, a fan with high performance in both of these areas is required

- Find the balanced design of an aircraft fan's efficiency in both states (propulsive and generative)
- Investigate the aerodynamic characteristics of a propulsion fan with regenerative air brake system

Circular flow field (AJKFED 2023) BLI flow field (APS DFD 2023)

Target geometry

Propulsion fan

Blade number	18
Hub-model	LEAP 1-A [3]
Size	25% of LEAP 1-A

Design variables

Blade (33 variables: *x*, *y*, *c*, *θ*, *xb*, *yb*, *t*) [4]

[3]Airbus. AIRCRAFT CHARACTERISTICS AIRPORT AND MAINTENANCE PLANNING, 2005
 [4] Wu, Long, et al. "Low-Noise Blade Design Optimization for a Transonic Fan Using Adjoint-Based Approach." AIAA Journal 60.4, 2022
 [5] Masashi Nishikata, et al. Easy-to-understand wind power generation, 2013

Problem settings—Optimization objectives & aerodynamics characteristics

[6] H.I.H Saravanamuttoo, et al., Gas Turbine Theory, 2017

[7] Shinichi Oda, et al. Research of electric power regeneration using automotive cooling fan, 2015

[8] Taguchi Hideyuki, et al. Performance and Weight Estimation of Next Generation Jet Engines, 2021

Design optimization method—<u>Bayesian optimization</u>

- Global optimization in high-dimensional space (35 design variables)
 High cost CFD analysis (1 case: 8 hours)
 - **Bayesian optimization** [9]
 - A stochastic global optimization method using approximate functions

Design optimization method—<u>Bayesian optimization</u>

Results—<u>Problem 1: Optimazation</u>

Number of additional samples: 5 samples × 14 updates

Results—Problem 1: Visualization of design space (Objective functions)

Self-organizing map :

Visualize the relationship of each variable in the data by mapping multi-dimensional data onto two-dimensional planes \times Violate π_p

Balanced solution: Relatively high η_p , η_g , $\pi_p > 1.2$ High *rot* area

Additional research—Problem 2: Application of BLI (Boundary Layer Ingestion)

Problem 1 ... Possibility of finding higher efficiency designs with higher $rot_{p,g}$

To realize much higher $rot_{p,g}$ to improve fan performance ... Application of BLI to decrease inlet velocity (V_{in})

⇒ Design optimization of a BLI propulsion fan with regenerative air brake % Changes from Problem 1 rot_g : 0~1⇒ 0~1× rot_p

 $rot = \frac{r\omega}{V_{in}}$

Results – Problem 1&2: Optimization (100 samples + 5 adds \times 14 updates)

Result—<u>Problem 2: Visualization of the design space</u>

Summary (Problem 1&2)

The design of a fan capable of generating electricity and propulsion has been implemented using the stochastic Bayesian optimization method,

successfully generating several shapes with balanced performance in both states

Problem 1 (Simplified setting):

- 1 Fans with regenerative air braking can be realized in regions with relatively high tip speed ratios during propulsion and power generation
- 2 Smaller chord length and more warped in the opposite direction of rotation

Problem 2 (Higher tip speed ratio):

- 1 Fans with regenerative air braking using BLI can be realized in regions with relatively <u>high tip speed ratio</u> during propulsion and generation but, it is limited to the tip speed ratio range where regeneration is possible
- 2 The important shape characteristic of a BLI propulsion fan appears <u>near the wing tips</u> of larger chord length, maximum camber is at near trailing edge, and angle of attack increases suddenly

Thank you very much for the Boeing company's financial support and listening to my presentation!!

Purchased items:

- Workstation
- RAM
- Tablet
- Mouse