

2022-2023 Performance Report of Tohoku University Students' Projects Supported by Boeing Higher Education Program

Thursday, December 14, 2023 Boeing Japan

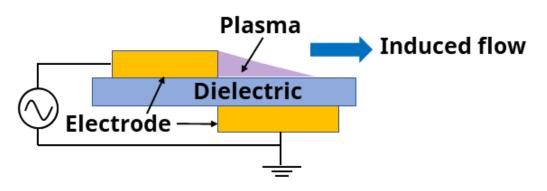
Project for real-time control of flow field using sparse processing PIV and plasma actuators

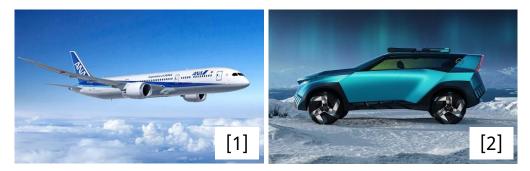
<u>© Chihaya Abe</u>, Rodrigo Viguera, Rika Kimura

Yasuo Sasaki (Proj. Assist. Prof., Nagoya Univ.) Taku Nonomura (Prof., Nagoya Univ.)

[1] https://www.ana.co.jp/ja/jp/domestic/departure/inflight/seatmap/[2] https://global.nissannews.com/ja-JP/releases/231010-01-j

□Various fluid machines


2


 Airplanes, drones, automobiles, windmills...
 Expectations for performance improvement in <u>active</u> flow control

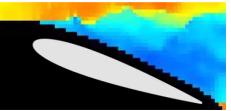
Backgrounds1 - PA -

Plasma actuator (PA) (Corke *et al.*, 2007, Fujii, 2014)

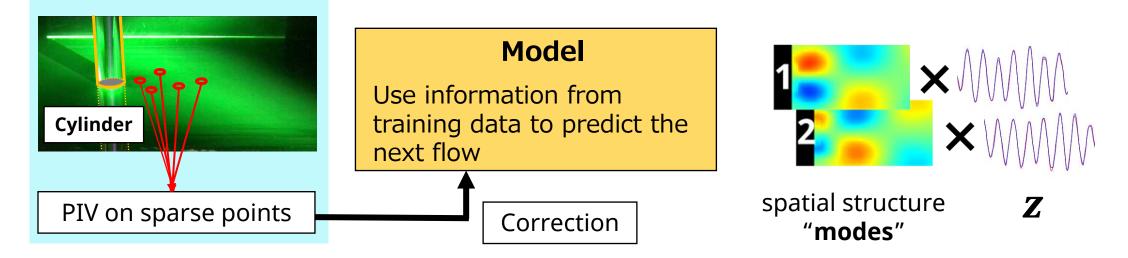
• Induced flow by plasma

• Optimal control input depends on airflow conditions

Feedback control according to flow field is important


³ Background2 – SPPIV -

□How to measure the current flow with high accuracy?


- Particle image velocimetry (PIV)
- The flow field data is huge

Sparse Processing PIV (SPPIV) (Kanda *et al.*, 2021, 2022)

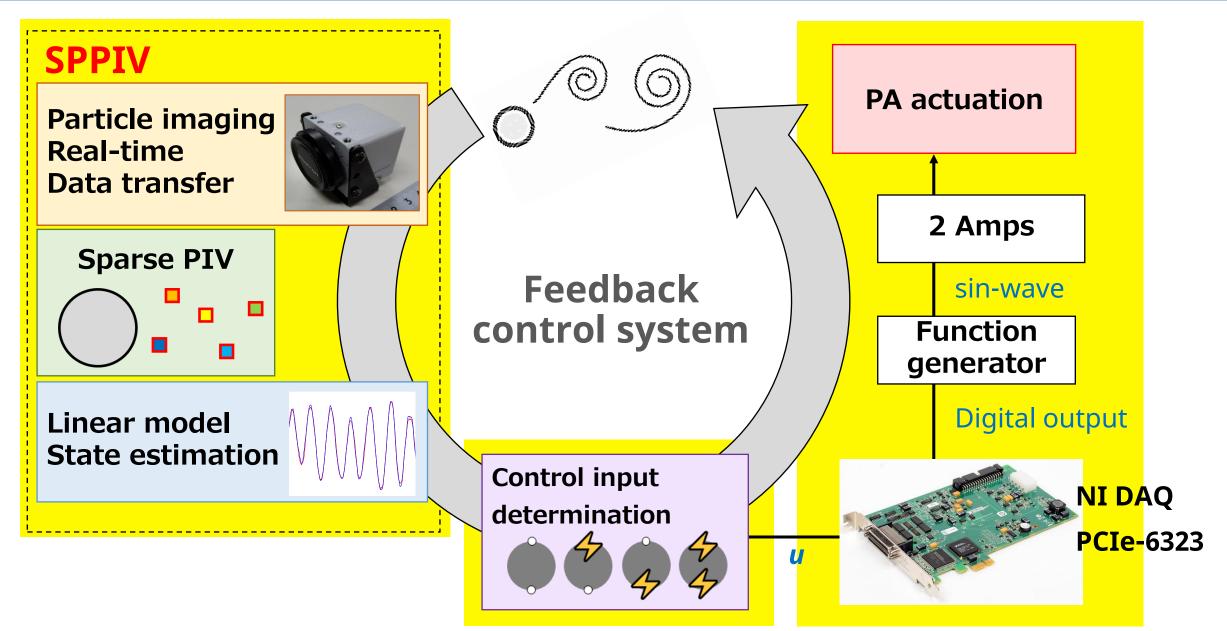
- Estimating the overall state with information from a sparse points (= sensors)
- Estimate Z (the "intensity" of the spatial structure known in advance)

Construct a real-time feedback control system using SPPIV and PA and evaluate the estimation performance and control effect

Target Kármán vortex suppression

Construct binary control rules by turning PA ON/OFF

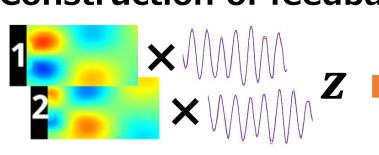
- One-point predictive control
- Advanced control (control in section)



DFeedback control in wind tunnel testing

 Evaluation of control effect by focusing on <u>symmetry</u> of flow velocity field

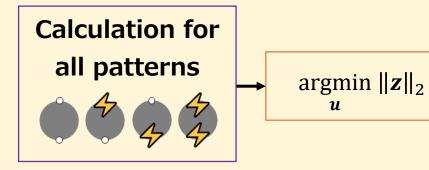
5 Feedback Control System


6 **Feedback Control Methods**

 $k + L + \nu$

Construction of feedback control rules

U


attenuate intensity of antisymmetric modes

≻Control law 1

One-point Predictive Control

- Predict \mathbf{z}_{k+L} of each \mathbf{u}_k
- Consider the next one step

Control law 2

Advanced control (Ikeda et al., 2017)

• **Consider the interval** between v steps

$$(\boldsymbol{v} = \begin{bmatrix} \boldsymbol{u}_k^{\mathrm{T}} \, \boldsymbol{u}_{k+1}^{\mathrm{T}} \, \cdots \, \boldsymbol{u}_{k+\nu-1}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}})$$
PA lag Time horizon
$$\begin{pmatrix} \boldsymbol{v} = \begin{bmatrix} \boldsymbol{u}_k^{\mathrm{T}} \, \boldsymbol{u}_{k+1}^{\mathrm{T}} \, \cdots \, \boldsymbol{u}_{k+\nu-1}^{\mathrm{T}} \end{bmatrix}^{\mathrm{T}})$$

Solve the optimization problem

 $\operatorname{argmin}\left(\|\boldsymbol{z}_{k+L+\nu}\|_2\right) +$ binarize

□ Test equipment

• Wind tunnel

- : Tohoku-University Basic Aerodynamic Research Wind Tunnel (T-BART)
- : IDP-Express R2000 (Photron) • Camera
- : Cylinder model (d = 30mm) Airfoil section

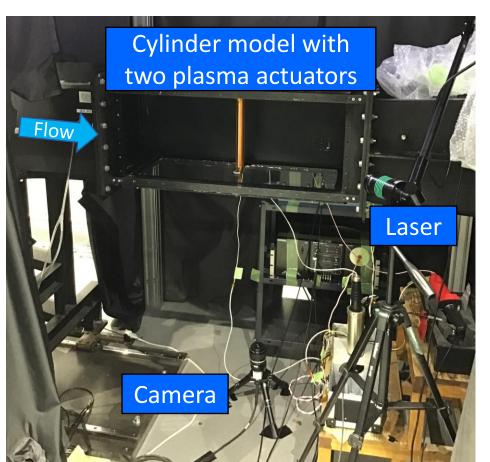
□ Test condition

- Flow speed
- Sampling rate : 4000 Hz

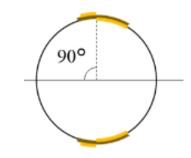
: 5 m/s

• *Re*

:1.1×10^4

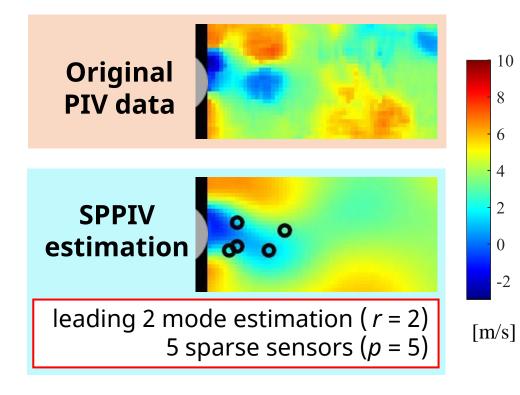

□ Plasma actuator

- waveforms
- Switching ON/OFF for training data

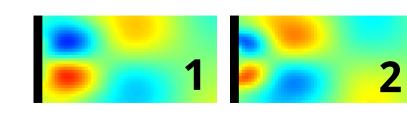

□ Analysis

- Estimation modes *r*
- Number of sensors *p*
- Parameters of *l*¹ opt.

- : 8kVpp, 10000Hz sin-wave
- : <u>100Hz random</u>
- :2
- : 2, 5, 10
- : v = 40 (Time horizon), $\alpha = 0.5$ (weight parameter)

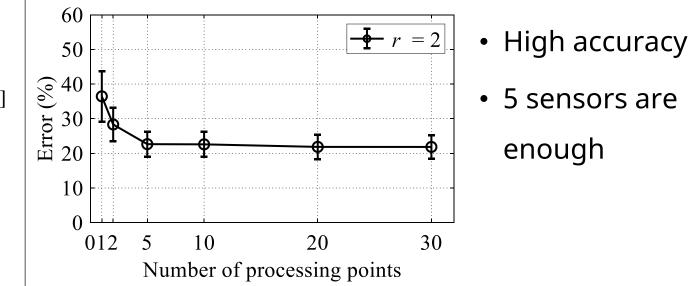


⁸ Visualization of Training Data / Error



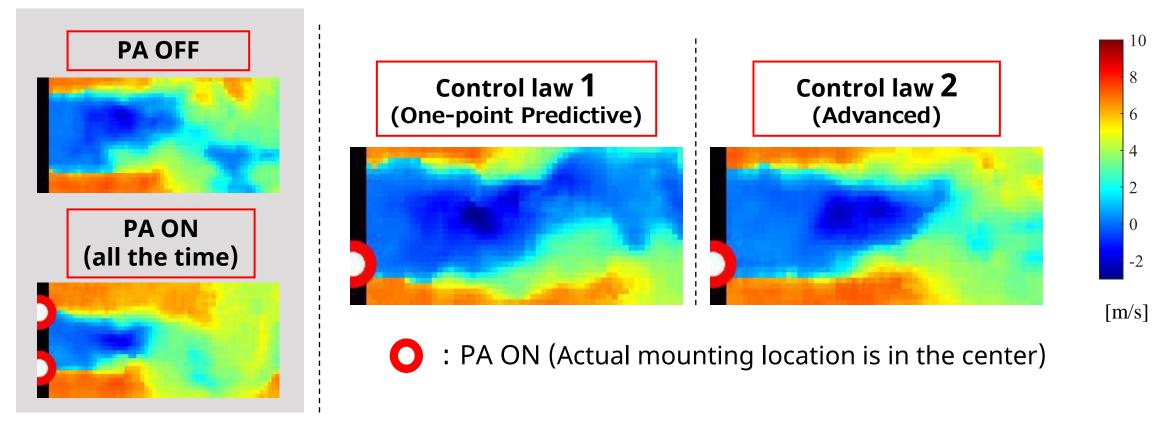
□ Velocity field (*x*-direction)

- Tracks large structures well
- Expects upper 2 modes to be sufficient for control


□ Spatial modes for reconstruction

Leading two modes represent **>50%** (Energy-based)

• Two modes represent the periodic movements

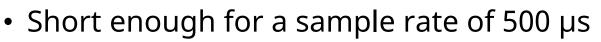

D Estimation error

⁹ Visualization of Feedback Control Results

□ Velocity field in x-direction (PIV was repeated for all pixels of flow field)

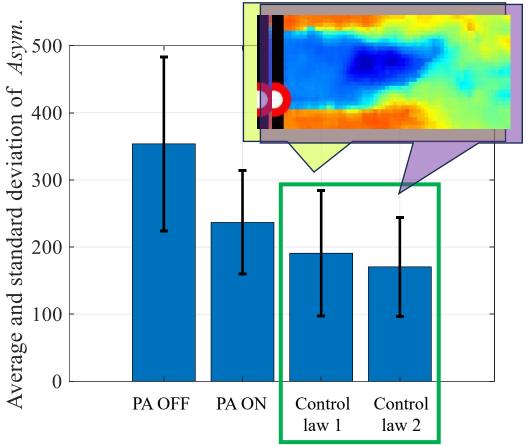
- The large-scale structure was disturbed by switching PA ON/OFF
- Time period when Karman vortex is suppressed exists (not continuous)
- Control law 2 uses two PAs discharging at the same time

¹⁰ Control Effectiveness / Processing Time



DEvaluation of control effectiveness • Evaluated by asymmetry of the flow field $\int_{0}^{10} \int_{0}^{10} Asym. = \sum \left(\underbrace{\mathcal{U}}_{0}^{2} (difference)^{2} + \underbrace{\mathcal{V}}_{0}^{2} (sum)^{2} \right)$

- Certain control effect confirmed
- Law 2 : More stable with small variance \rightarrow Due to time horizon


Processing time by step (5 sensors, average)

	Law 1	Law 2
SPPIV + determine u	60 µs	97 µs

• Law **2** : ADMM enables high-speed iterative calculations

*Alternating Direction Method of Multipliers

Constructed a real-time feedback control system using SPPIV and PA and evaluated the estimation performance and control effect

□ Results

- Real-time feedback control is achieved through wind tunnel testing
- It is found that control by time horizon considerations is better

□ Future works (for my master's degree)

- Parameter tuning for feedback control data
- Improving training data construction process