AIAA 2001-2656

A Solution-Adaptive Technique
using Unstructured Hexahedral

Grids

M. Sun and K. Takayama
Shock Wave Research Center, Institute of Fluid Science,
Tohoku University, Sendai, 980-8577, JAPAN

Anaheim Summer Co-Located Conferences
11-14 June 2001
Anaheim, CA

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344

A SOLUTION-ADAPTIVE TECHNIQUE USING UNSTRUCTURED
HEXAHEDRAL GRIDS

M. Sun * and K. Takayama

Shock Wave Research Center, Institute of Fluid Science,
Tohoku University, Sendai, 980-8577, JAPAN

ABSTRACT

This paper reports the development of a solution-
adaptive technique using unstructured hexahedral
meshes for unsteady compressible flow simulation.
A simple data structure that uses only two topo-
logical entities, cell and face, is proposed to avoid
data dependency that is encountered when imple-
menting unstructured data for vector and paral-
lel processing. Two flow solvers are constructed
based on two different schemes. One scheme be-
longs to the MUSCL family, while another employs
a second-order central-difference scheme with arti-
ficial viscosity. The parallel performance on three
supercomputers is reported. A numerical example
of unsteady shock motion from a square tube to a
circular tube is demonstrated.

INTRODUCTION

Unstructured meshes have been widely used in
computation fluid dynamics.!® In order to im-
prove the accuracy of numerical solutions with less
computer time, various grid adaptation methods
have been developed and applied to the simulation
of flows that contain disparate length scales, such
as flows with shock waves. Most schemes were pro-
posed for triangles and tetrahedra.® ' Since a, tri-
angular mesh contains more edges than the quadri-
lateral counterpart, it consumes more storage and
flux evaluations. Aftosmis et al' compared a vari-
ety of schemes on both meshes, and concluded that
on regular and stretched meshes the additional
edges do not lead to apparent accuracy advan-
tage. For three dimensional meshes, Biswas and

*Research Associate, email: sun@ceres.ifs.tohoku.ac.jp:
tProfessor, email: takayama@ifs.tohoku.ac.jp. Copyright
(©2001 The American Institute of Aeronautics and Astro-
nautics Inc. All rights reserved

1

Strawn? also concluded that hexahedral meshes
utilize computer resources more efficiently than
tetrahedral meshes for the same level of accuracy
by comparing the solutions of the Euler equa-
tions. In addition, unlike the hybrid methods that
combine structured quadrilaterals/prisms around
body with unstructured triangle/tetrahedral out-
side in the computation of viscous flows, a tech-
nique using unstructured quadrilateral or hexahe-
dral meshes will neatly generate a layer of body-
fitted mesh by repeatedly refining the cells in the
boundary layer.

It is therefore worthwhile to construct an un-
structured quadrilateral and hexahedral technique
for efficient and accurate flow analysis. We
have presented a 2-D vectorized adaptive solver
(VAS2D) using all-quadrilateral grids,> ® and suc-
cessfully applied to the simulation of a variety
of problems, such as interfacial instability, airfoil
flow, nozzle starting process, shock-transition over
a cylinder, shock/boundary-layer interaction. The
present paper reports our progress on the develop-
ment of an algorithm for three-dimensional flows
using hexahedral grids. The paper is organized as
follows. The basic ideas of the present data struc-
ture and grid adaptation are discussed at first, and
then two types of numerical schemes employed in
this study are described. Parallel performance and
a numerical result are presented before concluding
remarks are given.

DATA STRUCTURE
AND GRID ADAPTATION

The data structure developed for adaptive un-
structured quadrilateral and hexahedral meshes is
carefully optimized for the finite volume method,
in order to enhance computational efficiency and

American Institute of Aeronautics and Astronautics

Left Cell // Right Cell

U

Figure 1: Cell-face data structure: a. every cell
stores its location and points to six faces; b. every
face stores the locations of its four vertices and
points to two neighboring cells.

to minimize memory requirement. The finite vol-
ume method evaluates the change of the conser-
vative values of all control volumes by integrat-
ing their interface fluxes. From the point view of
programming it consists of two steps, calculating
fluxes at every interface and gathering interface
fluxes for every control volume. Therefore, the
data structure is designed as having two primary
arrays, one for control volumes, another for faces,
with a bi-directional reference between them,
control volume <= face.

The two steps can be easily programmed and cal-
culated without causing reconcurrence problem
that inhibits vector processing. Thus the data
structure is called a cell-face one. The data struc-
ture actually degenerates to a cell-edge one for 2-D
quadrilateral grids.

A basic nature of the data structure for three di-
mensions is that every cell points to its six faces,

2

Refinement

Coarsening

Figure 2: Strategy for grid adaptation: a father
cell is divided into eight sons.

and every face points to its two neighboring cells,
as shown in Fig. 1. Physical variables are stored at
cells, therefore it is a cell-centered data structure.
Every face is set to have a direction, so that we
may label two neighboring cells, left and right, ac-
cording to the direction as shown in Fig. 1b. The
six faces of each cell is ordered following rules:
1) two opposite faces must have a same direc-
tion; 2) the directions of three pairs of opposite
faces must constitute a local coordinate frame (the
right-hand rule) in which six faces is unambigu-
ously ordered. These strict definitions in the data
structure reduce the complexity of the unstruc-
tured adaptive solver without losing generality.
Actually the whole solver, both grid adaptation
and flow analysis, is freed of any searching which
is commonly used for an unstructured grid allow-
ing mesh adaptation. The existence of the order-
ing method for any unstructured quadrilateral and
hexahedral grids has been proven.> Note that the
data structure does not require additional memory
to store the definitions, but stores the neighboring
information following the rules.

A cell to be refined is divided into eight subcells
or sons as shown in Fig. 2. To avoid unlimitedly
adding fine cells around shock waves, either the
maximum level of refinement or the minimum cell
volume or both are prescribed. When either the
level or the volume of cell reaches the given limit,
further refinement is prohibited.

The criterion used for grid adaptation is based
on the truncation error of the Taylor series expan-
sion of density. The criterion is, for cell 4

Refine = Largest et of i’s six faces > &,

Coarse = Largest eT of i's six faces < &,
)

where Refine and Coarse are logical flags which
indicate whether the cell needs to be refined or

American Institute of Aeronautics and Astronautics

........................

Figure 3: Sketch of an interface: face A and its
two neighboring cells ¢ and j; i — 1 and j + 1 are
ghost cells.

coarsened respectively. The truncation error in-
dicator ep is defined for every face, and given by
the ratio of the second-order derivative term to
the first-order one of the Taylor series of density,
so that

[(Vip)e = (Vip)il [(Vip)c — (Vip),]

appe/dl+[(Vip)il " agpe/dl + I(Vngil)
where V; denotes the gradient along direction [
as shown in Fig. 3, (Vip)c = (p; — pi)/dl. The
subscripts C, i, and j represents the locations of
the gradients, as shown in Fig. 3. It can be proven
that the two ratios in (1) are exactly the central-
difference formulation of the ratio of the second-
order term to the first-order one

er = Max(

)

1/2p" Ax?

| oAz

at points ¢ and j for ay=0, by considering a 1-D
problem along [. The logical operation Max in (1)
just chooses a larger value of the two ratios.

There are three parameters in the criterion. af
is initially designed to prevent a zero denomina-
tor, and it can also filter extremely small flow
variations. For example, if the amplitude of the
variations in some regions is much less than a;p.,
then the truncation error indicators are also small.
Consequently cells will not be refined there. The
subscript f therefore denotes “filter”. p./dl which
follows s is used to make the indicator dimension-
less. ¢, and ¢, are threshold values for refinement
and coarsening. Numerical experiments show that
three parameters are nearly problem-independent.
Parameters €, = 0.08, . = 0.05 and oy = 0.03

3

are generally used in most 2-D and 3-D applica-
tions. The indicator in its structured formulation
has been tested by a variety of gas-dynamic prob-
lems with shock waves in our early study.® It
was noticed that the indicator is sufficient to de-
tect most important phenomena in compressible
flows, such as shock wave, contact surface, the
front of expansion wave, and vortex. The indica-
tor is also consistent with the limiting procedure
in flow solvers so that any cell that turns on the
artificial viscosity or whose slope is limited must
be refined. In coarsening procedure only when all
sons are flagged coarse = true, are they deleted.
In Fig. 2 all sons and inside edges are removed,
and recovered to their father cell.

In the refinement procedure, it is required that
no two neighboring cells differ by more than one
refinement level. This one-level-difference rule has
been accepted by many authors because it simpli-
fies adaptation procedure and prevents patholog-
ically large volume ratios under certain circum-
stances. However, in unsteady calculations, the
rule may mismatch moving refined regions, say
shock wave regions. To overcome this problem,
pre-refinement is introduced.® Once a cell cannot
be refined due to the level difference between itself
and one or a few neighboring cells, the neighbor-
ing cells are refined no matter what values of their
refine and coarse are.

In programming, refinement and coarsening
procedures are handled separately. Both proce-
dures have similar steps:

1. Handling the inside of cells which are flagged
to be refined or coarsened;

2. Handling the faces of the flagged cells;

3. Arranging memory.

Step 1 is conducted based on cells, and updates
all information inside, such as face deletion and
adding of finer cells, which is independent of other
cells. Step 2, based on faces, renews every face of
refined or coarsened cells and its two neighboring
cells, which may be done without influencing other
faces. In this way the adaptation procedure has no
data dependence and can be naturally vectorized.
Step 1 and 2 change the status of some cells and
faces, for example from sons to fathers. Step 3

American Institute of Aeronautics and Astronautics

fills the “holls” that appear due to the deletion of
cells, and makes the memory easily to be accessed
by other subroutines such as flow solvers.

The physical values at newly appeared cells in
the adaptation procedure have to be imposed by
those on the old mesh. In the refinement proce-
dure the conservative variables of new sons are lin-
early interpolated from those of their father, while
in coarsening procedure flow variables of a coars-
ened father cell are the volume-weighted average
of these of its deleted sons. The interpolation and
the weighted average for new cells preserve con-
servation.’

FLOW SOLVER

The conservation laws for non-reactive compress-
ible flows are solved by the finite volume method.
The method solves the conservation laws by di-
rectly applying them to every non-overlapping dis-
crete volume the summation of which covers the
whole computational domain. The conservation
laws written for a discrete control volume are, for
a second-order scheme in both time and space,

fa
At aces Fn+1/2

urtl = ur —
' tA k=1 * ,

(2)

where FZH/ % are fluxes evolved by half a time
step, and locate at the centroid of interface k.
Since the values are unknown at the centroid, they
are interpolated from that at cells (cell-centered
data are used here). Difference between conserva-
tive schemes is just the way to calculate the nu-
merical fluxes. Two schemes that belongs to the
central-difference scheme and the upwind scheme
respectively are used to calculate the fluxes.

For the solver using the central-difference
scheme, a TVD smoothing scheme is used.® In
solving the compressible Euler equations, the
fluxes through cell faces, which consist of inviscid
fluxes and smoothing fluxes, are

F = Finviscia + Fsmoothing~

(3)

The inviscid fluxes are convection terms and pres-
sure surface terms, or those in the Euler equations.
A predictor step evolves the solution by a modi-
fied half time step, %(1 — 24), by locally solv-
ing the two-dimensional Lax-Friedrichs scheme at

4

the interface, where p is a smoothing coefficient.
Both the interpolation and the predictor step ne-
cessitate estimation of the gradients at every cell
which are given by the least-square method. This
procedure for g = 0 is equivalent to a predictor-
corrector Lax-Wendroff scheme.

The smoothing fluxes which are added to sup-
press spurious oscillations, are defined by the fol-
lowing equation

Fsmoothing = _MlUx - M2Uy - MBUz7 (4)
where p1, pe and ps are nonlinear coefficients of
artificial viscosity. Artificial viscosity coefficient is
actually a tensor in multi-dimensional flows. Since
it should be as less diffusive as possible, it is set
to be zero in directions other than the normal
direction of a wave front (k1,ke,ks). The non-
zero element, u, is equal to the coefficient in the
one-dimensional case. It is then rotated to the
Cartesian coordinates, and become a diagonal ma-
trix with three diagonal elements (u1,uo,pus) =
(wlka|, plkal, p|ks|), where all elements are forced
to be positive. Having obtained the artificial vis-
cosity coefficient in x, y and z directions, one may
easily design a smoothing flux as that in (4). The
direction of the wave front is estimated by velocity
difference between two cells. The nonlinear coef-
ficient p is limited according to one dimensional
analysis so that the TVD constraint can be satis-

fied.> 7

For the solver using the upwind scheme, the
MUSCL-Hancock scheme (see Toro’s book? for
formulations on structured grids) is extended to
unstructured grids. Primitive variables are first
reconstructed by the least square method at cells,
and other procedures are all conducted at inter-
faces. In slope limiting that is needed to suppress
oscillations around sharp changes for high-order
schemes, only gradients in the direction along two
neighboring cells are modified by limiters. One
may also limit the slopes on one cell, i.e. limit the
slopes in all directions. We compared two limit-
ing methods for quadrilateral meshes and found
numerical difference is negligible. The minmod
limiter is used in most applications. The limited
slopes are then used to evolve solutions at the two
cells respectively by half a time step. One of the
exact Riemann solver, HLL and HLLC approxi-

American Institute of Aeronautics and Astronautics

mate Riemann solvers? is chosen to determine the
flux at interface depending what problem to solve.

The flow solver can be conveniently constructed
under the cell-face data structure with high effi-
ciency. Since the flow solver computes the change
of the conservative values of all cells by integrat-
ing their interface fluxes. This procedure is done
following a routine that consists of following basic
steps:

1. Computing fluxes through non-split non-
boundary edges;

2. Computing fluxes through non-split bound-
ary edges;

3. Computing fluxes through split faces by
adding their subfaces’ fluxes;

4. Computing the sum of six fluxes for every cell.

The computation of fluxes through a face requires
only its two neighboring cells whose indices are
explicitly saved for every face. This property is
similar to an edge-based data structure. Since all
information of adjacent connectivity is directly ac-
cessible, the flux evaluation can be simply vector-
ized. T However, to get the same information, the
quadtree or octree structure often needs to climb
up to the root of the branch and then climb down
to neighboring cells, which is difficult to vectorize
if not impossible. The searching process is avoided
by using the present data structure. This strong
point is shared by other steps under the data-
face data structure. Note that because of step
3, step 4 simply accumulates the fluxes through
six faces no mater whether the face is split or not
while preserving conservation, which in program-
ming means that no logical statement is necessary
for judging neighboring connetivities.

It is clear that the data structure allows loop-
level vector/parallel processing in both mesh adap-
tation and flow analysis. One may expect it is
highly efficient on a shared-memory machine, but
less efficient on a distributed-memory machine.
The cache and communication factors will greatly
affect the performance of loop-level parallelization.

tAll flow solvers mentioned in the paper are vec-
torized except for the MUSCL scheme using the exact
Riemann solver that contains uncertain iterations.

5

14 r --0--VAS2D on ORIGIN
--B- - VAS3D on ORIGIN
2L —e— VAS2D on CRAY C90 -©
—a— VAS3D on NEC SX-5
o 10F
% 0
8 -
& =
6 .
LET
.
4 + e
/O’r
2L m
1 4 8 16 32
Processors
Figure 4: Performance of the 2-D and the 3-D

solvers on machines, Cray C90, Origin 2000, and
NEC SX-5

This will be shown by numerical tests in the next
section.

NUMERICAL RESULTS

The data structure proposed contains no data de-
pendency, so that it allows easy vector/parallel
processing without recourse to any sorting or
coloring procedure that most unstructured data
structures require. The parallel performance on
three different machines of our 2-D and 3-D solvers
is summarized in Fig 4. On the shared-memory
machines, NEC SX-5 and Cray C90, the data are
collected by testing an unsteady computation in
which grid adaptation is performed at every it-
eration. For eight processors the speedup is ap-
proximately six, which is not bad because the two
solvers are automatically parallelized by the com-
pliers coming with the machines. On the NEC
SX-5, the speed per processor is about 2.1GFlops,
which is 26% of the machine peak performance.
On the distributed-memory machines, only steady
flow computation is tested, and grid adaptation
is conducted every 50 steps. It seems that the
speedup achieved is not as high as that of other
parallel unstructured codes that use domain de-
composition method. However, if the overheads of
conducting domain decomposition is taken into ac-
count, the speedup is rather satisfactory because
the data structure allows grid adaptation that will
decrease computer time dramatically.

Numerical results of a 3-D case are shown in

American Institute of Aeronautics and Astronautics

I*Cligure 5: Shock wave entering a large cylindri-
cal tube from a smaller square tube: a. initial
unstructured mesh, 299 cells; b. adaptive sur-
face meshes at t = 1.4, totally 776,550 cells and
2,412,340 faces; c. corresponding density con-
tours; d. adaptive cells on a cut plane inside.

6

Fig. 5, in which an incident shock wave with
M;=2.0 moves from a square cross-section shock
tube into a larger cylindrical tube. Initial mesh
contains 299 cells. Notice that unstructured cells
are used in the cylindrical cross-section. In this
unsteady computation, because of the existence
of the moving shock wave and complicated vor-
tex formation whose locations are unknown in
advance, the mesh adaptation is done at every
time step. An adaptive mesh and the density
distribution on the surface at some instant after
shock wave entering the circular tube are shown
in Figs. 5b and c; the total number of cells is in-
creased to about 0.78 million. It takes about three
minutes to run this computation on the SX-5 using
one processor. It is seen that basic flow features,
such as incident shock and vortices, are well re-
produced. Hexahedral cells on a cut plane inside
the tube are shown in Fig. 5d; fine cells are clearly
distributed around shocks and vortex regions.

CONCLUDING REMARKS

A solution-adaptive technique for unstructured
hexahedral meshes has been proposed using a vec-
torizable data structure, and successfully applied
to the solution of the unsteady Euler equations.
The high vector and parallel efficiency has been
obtained on shared-memory machines. For cache-
based distributed-memory machines, although the
present technique allows easy loop-level paral-
lelization without domain decomposition, it fails
to take full advantage of the high-speed cache
memory. We have obtained some ideas how to
improve the situation, and will discuss them in fu-
ture.

One factor that may hinder applying the tech-
nique to general problems is the level of automa-
tion of hexahedral meshing for arbitrarily com-
plex geometry. Although it is not a problem for
a simple tube geometry discussed in this paper,
the amount of human effort necessary to discretize
a general three dimensional domain possibly out-
weighs what one gains on accuracy and computa-
tional speed.? Much more work on the automation
of hexahedral meshing is still needed.

References

[1] Aftosmis MJ, Gaitonde D, Sean Tavares T
(1994) On the accuracy, stability, and mono-

American Institute of Aeronautics and Astronautics

tonicity of various reconstruction algorithms
of unstructured meshes, ATAA paper 94-0415.

[2] Biswas R, Strawn RC (1997) Tetrahedral and
hexahedral mesh adaptation for CFD prob-
lems, NAS-97-007, NASA Ames Research
Center.

[3] Blacker T (2000) Meeting the challenge for au-
tomated conformal hexahedral meshing, 9th
Intl. Meshing Roundtable, New Orleans

[4] Lohner R (1987), Comput. Meths. Appl. Meh.
Engrg. V61, pp.323-338.

[5] Sun M (1998) Numerical and experimental
studies of shock wave interaction with bodies,
Ph.D. Thesis, Tohoku University, Japan. http:
//ceres.ifs.tohoku.ac.jp/ "sun/thesis. html

[6] Sun M, Takayama K (1999) Conservative
smoothing on an adaptive quadrilateral grid,
J. Comp. Phys, V150 : 143-180.

[7] Sun M, Takayama K (1999) A simple smooth-
ing TVD scheme on structured and unstruc-
tured grids, Godunov methods theory and ap-
plications, Oxford University, Oct. 18-22.

[8] Sun M, Takayama K (1999) H-adaption on un-
structured quadrilaterals, 8th Intl. Symp. on
Comput. Fluid Dynamics, Bremen, Germany.

[9] Toro EF (1999) Riemann solvers and numer-
ical methods for fluid dynamics, 2nd edition,
Springer.

[10] Venkatakrishnan V (1995) A perspective on
unstructured grid flow solvers, AIAA paper
95-0667. see also AIAA J. V34 : 533-547,
1996.

[11] Voinovich P, Timofeev E, Takayama K, Saito
T, Galyukov A (1998), ATAA paper 98-0540.

7
American Institute of Aeronautics and Astronautics

	img036
	aiaa2001-2656

