Numerical and Experimental Studies of Shock Wave
Interaction with Bodies

by
Mingyu Sun

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
( Engineering )

in Tohoku University
1998

Doctoral Committee:

Professor Kazuyoshi Takayama,
Professor Kazuhiro Nakahashi
Professor Keisuke Sawada

Associate Professor Satoru Yamamoto
Associate Professor Zonglin Jiang



Contents

Introduction

References ... ...

On the Lax-Wendroff scheme with conservative smoothing

2.1

2.2

2.3

2.4
2.5

Introduction . .. ...

2.1.1 Total variation diminishing (TVD) scheme ............
2.1.2  The Lax-Wendroff scheme ........................ ...

The scalar

CaASe . e e e e e e e

2.2.1 The TVD Lax-Wendroff scheme via limiter............

2.2.2 The TVD Lax-Wendroff scheme via nonlinear
artificial viscosity ........... i

2.2.3  Numerical experiments ........... ... ... ...

Extension to system of one-dimensional conservation laws. . ...

2.3.1 Extension via the local characteristic approach ........

2.3.2 Extension via scalar artificial viscosity ................

2.3.3 Numerical experiments ..............................

Extension to system of multi-dimensional conservation laws . ..

Summary .

References

10
11
12
12

13
28
29
32
34
38
40
49
52



3 An essentially vectorizable data structure for some

unstructured grids

3.1

3.2

3.3
3.4

Introduction . ... ...
3.1.1 Structured and unstructured grids and data structures .
3.1.2 Mesh adaptation ............ ... ... .. ... ...
3.1.3 Vector and parallel processing ........................
3.1.4 The essentially vectorizable data structure ............

The cell-face data structure.......... ... ...

3.2.1
3.2.2

Optimization of global operations ................. ...

Optimization of local operations......................

Mesh adaptation under the cell-face data structure ...........

SUIMIMIATY « .« .o e ettt e e e e e e e e e e e e e e e e

References. . ...

4 Two-dimensional vectorizable adaptive solver (VAS2D)

4.1
4.2

4.3
4.4

4.5

Introduction .. ...

Automated quadrilateral mesh generation................. ...

4.2.1
4.2.2

Outline of the mesh generation algorithm .............

Grid examples ...

Data Structure . . ...

Adaptation procedure ........ ... ... . ...

4.4.1
4.4.2
4.4.3
4.44

Criteria for adaptation ..............................
Strategy for adaptation............. .. .. ... . L
The conservative variables at new cells................

Efficiency of vector processing of the adaptation.......

Unstructured flow solver. . ... ...,

4.5.1
4.5.2

The two-dimensional conservation laws ...............

Finite volume method ........ ... ... ... ... ... ... ....

i

54
54
54
57
58
60
60
61
63
68
71
74

76
76
79
79
82
82
85
85
87
92
95
95
95
98



4.5.3 Least square method ............ ... ... ... ... ... .... 101

4.5.4 Evaluation of fluxes through cell faces ................ 102
4.5.5 Boundary conditions ........... ... . i 106
4.5.6 Flow solver under the cell-edge data structure ......... 110
4.6 Evaluation of the VAS2D ... ... .. 111
4.6.1 Efficiency of vector and parallel processing ............ 111
4.6.2 CPU time distribution on subroutines ................ 113
4.6.3 Cartesian mesh vs. adaptivemesh .................... 114
4.7 Numerical results ......... .. 117
4.7.1 Shock diffraction .......... .. ... 117
4.7.2 Steady supersonic channel flows ............... ... ... 123
4.7.3 Shock / circular-cylinder interaction .................. 125
4.7.4  Shock / square-cylinder interaction ................... 125
4.7.5 Shock / boundary layer interaction ................... 128
4.7.6  Shock wave moving inanozzle .............. .. .. ... 133
4.8 Remarks on three-dimensional extension ..................... 133
4.9 SUMIATY . . . oo et e 137
References. ... ..o 139
Experimental and numerical study of shock wave focusing 142
5.1 Introduction ........ ... 142
5.2  Experiment and computation ............... ... .. ... ... 144
5.2.1 Experimental setup ......... ... . ... i 144
5.2.2  Numerical methods......... ... . ... . ... ... ... 146
5.2.3 Quantitative image data analyses of interferograms .. .. 147
5.3 Formation of reflected shock wave .............. ... ... . ... 150
5.4 Shock wave focusing and collision of triple points............. 151
DD SUIMINATY .« ottt et e e e e e e e e e e e 158

il



References. . ... 160

6 Conclusions 162

Acknowledgement 164

v



List of Figures

2.1

2.2
2.3

2.4

2.5

2.6

Geometrical interpretation of scheme (2.21). The coefficient p is a
distance from the initial profile to the one after smoothing. The
distance is normalized by the local jump between two neighboring
nodes, say cand d........... . ... . .

Five representative stagesof ¢ ........... ... .. ... .. ... . ...

Sketch of the transition region between the smoothing scheme and
the Lax-Wendroff scheme. F5 and F'™W denote the fluxes of the two
schemes, respectively. ........ ... ... .. i

Convection of a square wave, o = 0.5, 200 steps. a. results of the
first-order upwind scheme and the Lax-Wendroff scheme; b. results
of smoothing TVD scheme and Roe’s symmetric TVD scheme using
limiter (2.19).. ..ot

Convection of a square wave under different CFL numbers by the
smoothing TVD scheme a. smoothing TVD A; b. smoothing TVD
B. 1000, 200 and 112 steps for o = 0.1, 0.5, 0.9 respectively.

Numerical results obtained by using two scalar coefficients: a. scalar
coefficient (2.83), denoted by Max — p; b. scalar coefficient (2.84),
denoted by Min — . ...

17
20

22

30

31

35



2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

3.1

TVD region of artificial viscosity coefficient p as a function of 0. a.
The proposed artificial viscosity coefficient p defined in (2.21), or
more clearly in (2.23); b. The artificial viscosity coefficient p defined
by (2.87), a similar coefficient was used by Davis. In figure a, the
minimum coefficient is a monotone function of the CFL number |o|;
while there is an extreme value for |o| = 1/2 in figure b. A trouble
of the existence of the extreme value is that defining p according to
a fast wave or larger |o| is not sufficient for slow waves in solving the
system of the conservation laws. ............................

Sod’s problem solved by scheme “Roe”, a = 1.0: a. 0 = 0.2;
b, 0= 0.8, .

Sod’s problem solved by scheme STVD A,  =1.0: a. 0 = 0.2;
b. 0= 0.8,

Sod’s problem solved by scheme STVD B, a =1.0: a. 0 =0.2;
b. 0= 0.8,

Sod’s problem solved by Harten’s TVD scheme. a. o0 = 0.2;
b. 0= 0.8,

Sod’s problem solved by scheme STVD A, aa =1.2, 0 =0.8. ..

Computational stencil for the proposed scheme on the Cartesian grid:
a. stencil for evaluating the flux through interface AB; b. stencil for
the control volume (i, j), bounded by ABCD. ................

A locally one-dimensional wave lying on a two dimensional control
volume. ..

Decomposition of the artificial viscosity coefficient according to the
wave direction. . ........ ...

A shock wave with M, = 2 diffracting over a 90° corner: 32 x 32 X
3 cells, CFL=0.7, = 1.2. a. the result obtained by using the
conservative variables; b. the result obtained by using the primitive
variables. ...

[llustration of structured grids: a. rectangular structured grid;
b. triangular structured grid. .......... ... .. .o

vi

37

39

41

42

43

44

44

47

49

50

%)



3.2

3.3

3.4

3.5

3.6

3.7

3.8
3.9

3.10

3.11

The ratio of the number of cells and vertices for different cells: a.
triangular grid, b. quadrilateral grid, c. hexagonal grid. One new
vertex introduces two triangular cells, or one quadrilateral, but one

new hexagonal cell requires the addition of two vertices, as shown by
dashed lines........ ...

Illustration of local mesh adaptation of a cell. The adaptation is
always dividing a cell or merging a few subcells, then a cell-centered
data structure is preferred. ........ ... ... .. ...

[llustration of generating a cell-face data structure for a quadrilateral
grid: a. an arbitrarily unstructured quadrilateral grid; b. roads
inside all quadrilateral cells; c. roads outside of the grid and a path
to trace all cells shown by arrows; d. a definition of face directions
according to the road direction. ............... ... .. ... ...

Ordering adjacent connectivity by the direction of the road: a. label-
ing two neighboring cells of a face left celland right cell; b. numbering
all facesof acell. ... ... .. . .

Possible order of three dimensional cells: a. for a tetrahedron; b. for
a hexahedron. ... ... .. . . . .

[llustration of orders of geometry required by some numerical meth-
ods: a. contour integral along outside neighboring cells, the order of
these cells is useful; b. surface integral over a surface consisting of
six neighboring cells, the information of which three cells that form a
valid triangular surface is useful. .......... ... ... ... . ...

The order of face for quadrilaterals ..........................

[llustration of hanging nodes: a. hanging node H on an adaptive
quadrilateral grid; b. hanging node H on an adaptive triangular
grid. Dashed lines indicate possible connections to remove the hang-
ing nodes. The present cell-face data structure will leave the hanging
nodes intact. ........ ...

[llustration of the direction of the outside subfaces: a. face directions
of a cell; b. directions of the outside subfaces. The directions of
subfaces are the same as these of their unsplit faces. .........

A vectorizable adaptation strategy for a hexahedral cell.......

vil

56

63

64

66

66

69

69

71

71
72



3.12

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Mlustration of four possible adaptation strategies under the cell-face
data structure........ ... ..

The overview of the algorithm VAS2D ................ ... ...

The overview of the quadrilateral mesh generation
algorithm (QuadMesh) ....... ... ... ... .. ... .. ..

Mlustration of joining-front a. Joining a multiply connected front;
b. Joining a simply connected front. A new cell is created between
front(s); the new cell changes the connectivity of front. ......

Unstructured quadrilateral mesh generated by the QuadMesh: a 30°
wedge, 640 cells. ... ...

Unstructured quadrilateral mesh generated by the QuadMesh:
a half-circle, 2112 cells ........ ... ... .

Unstructured quadrilateral mesh generated by the QuadMesh:
anozzle, 2169 cells . ... ..

Unstructured quadrilateral mesh generated by the QuadMesh:
an oblique square in a tube, 3316 cells.......................

Cell-edge data structure: a. Cell information, a cell points to four
edges; b. Edge information, an edge points to two
neighboring cells. ... ... . .

Sketch of an interface: interface AB and its two neighboring cells ¢
and 7; 7 —1and 7+ 1 are ghost cells.........................

Refinement strategy: father cell ABCD is divided into four sons
EBFO, OFCG, HOGD and AEOH. .........................

The levels of refinement. Suppose cell ABCD is one of the coarsest
cells; the level of it is then 0. The refinement level of a son equals to
that of his father plus 1. In the figure the level of cell 1, 2, 3 and 4 is
1; the level of cell 5, 6, 7 and 8 is 2, and so on. It is not allowed that
the difference between levels of two neighboring cells is more than 1.
Refining cell 5 is then not allowed. .........................

Directional refinement inside the boundary layer. A highly stretched
mesh can be generated by repeatedly refining cells along the viscous
boundary. . ...

viil

72
78

80

81

82

83

83

83

83

86

88

89

90



4.13

4.14

4.15

4.16

4.17
4.18
4.19
4.20

4.21
4.22

4.23
4.24

4.25

4.26

Mlustration of pre-refinement. Cells in column ¢ cannot be refined
to capture the coming shock wave, because the level of refinement in
column d is lower. The cells in column d has to be pre-refined.

Memory organization...............coviniineinenena...

Illustration of the active mother edge. Active mother edge AB is
referred by cell 7, then information of it should be updated.

Flow variables at new cells. a. in refinement procedure, flow variables
of new sons are interpolated from these of their father; b. in coars-
ening procedure, flow variables of a father cell are volume-weighted
average of these of its “dead” sons. Both the interpolation and the
average preserve conservation. ...................ciiii....

Vector efficiency of refinement and coarsening procedure ... ...
General form of the conservation laws .......................
Control volume ....... ... i

Stencil of the local gradient. a. the averaged gradient (4.35); b. the
modified gradient (4.37). The modified gradient uses a more compact
stencil. ...

Schematic of the treatment of boundary conditions ...........

Vector efficiency of the VAS2D with the Euler solver using different
refinement levels .......... ... .. i

Parallel efficiency measured by Cray performance tool atexpert

CPU time consumption by main subroutines: a. the VAS2D with the
Euler solver; b. the VAS2D with the Navier-Stokes solver. The data
is gathered by Cray performance tool flowtrace. ............

Shock diffraction using different levels of refinement: M, = 1.6, CFL
= 0.7, : a. No adaptation, 3072 cells, CPU time = 0.592s; b. 1-level
refinement, 4773 cells, CPU time = 1.98s; c. 2-level refinement, 7695
cells, CPU time = 6.09S...........oiiiiii ...

Shock diffraction, 3-level refinement, CFL = 0.7: a.b. M; = 1.3,
12174 cells, CPU time = 18.9s, oy = 0.02; c.d. M, = 1.6, 13077
cells, CPU time = 20.5s; e.f. M, = 2.0, 16026 cells, CPU time =
2 3

X

90
91

92

94
94
96
100

105
108

113
114

115

118

120



4.27

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

Shock diffraction, 3-level refinement, CFL = 0.7: a.b. M, = 4.0,
20595 cells, CPU time = 23.0s; c.d. M, = 8.0, 20817 cells, CPU time
= 22.7s; ef. M, =16.0, 20349 cells, CPU time = 22.4s. .....

Shock wave diffraction for M, = 1.475: a. experimental photo
obtained by holographic interferometry; b. numerical isopycnics
obtained by the VAS2D with the Euler solver. ...............

Steady flow in a tunnel with 15° bump: a. M = 2, ¢t = 4, with 1-level
uniform refinement; b.c. M = 2, t = 4, 3-level refinement, 11338
cells, 1670 steps, CPU time = 47.8s; d.e. M = 4, t = 2, 3-level
refinement, 11386 cells, 1381 steps, CPU time = 47.4s. .......

Shock / circular-cylinder interaction, isopycnics and corresponding
adaptive meshes. Incident shock Mach number M; = 1.7, 4-level
refinement, CFL = 0.7. a.b. ¢t = 0.0, 9735 cells, CPU time = 3.0s;
c.d. t =1.0, 12471 cells, CPU time = 18.6s. ................

Shock / circular-cylinder interaction, isopycnics and corresponding
adaptive meshes (Continued). e.f. ¢t = 2.0, 20253 cells, CPU time =
47 .4s; g.h. t = 3.0, 29790 cells, CPU time = 101.5s, 1800 steps.

Shock / square-cylinder interaction, isopycnics and corresponding
adaptive meshes. Incident shock Mach number M, = 2, 3-level
refinement, CFL = 0.7. a.b. ¢ = 0.0, 8149 cells, CPU time = 4.3s;
c.d. t = 1.0, 22981 cells, CPU time = 29.6s. ................

Shock / square-cylinder interaction, isopycnics and corresponding
adaptive meshes (Continued). e.f. ¢t = 2.0, 38383 cells, CPU time =
82.0s; g.h. t = 3.0, 48334 cells, CPU time = 147.6s, 1767 steps.

Shock wave interaction with an oblique rectangular. a. experimental
photo obtained by holographic interferometry; b. numerical isopyc-
nics obtained by the VAS2D with the Euler solver. ..........

Validation of the Navier-Stokes solver. The theory of boundary layer
states that for a flat wall \/ﬁ is 0.332. The numerical values

along the flat wall are shown by circles. z is a distance mesured from
the tip of the flat wall. ... .. ... .. ... . .. .. .

Shock / boundary layer interaction, My, = 5, T,, = 298k; 6-level
refinement, CFL = 0.5, ay = 1.4: a.b. 32502 cells, 18832 steps,
t = 25us; c.d. 59205 cells, 25853 steps, t = 50us. ...........

121

122

124

126

127

129

130

131

132

134



4.37 Shock wave motion in a nozzle for My = 2.8. CFL = 0.7, e consists

4.38

5.1
5.2

9.3
5.4

)

2.6

5.7

5.8

5.9

Of 36091 cellS. ..ot

Shock wave motion in a nozzle for M, = 2.8: a. experimental photo
obtained by holographic interferometry; b.c. numerical isopycnics
and the corresponding grids obtained by the VAS2D. b is the result
of the Euler solver, and c the Navier-Stokes solver. ...........

Experimental setup and optical arrangement .................

A 150 mm wide circular reflector connected to the 60 mm x 150 mm
shock tube . ... .

The initial quadrilateral grid for the VAS2D..................

Comparison between an interferogram and the corresponding numer-
ical results of the VAS2D: (a) interferogram for M; = 1.502 £0.002
and at t = 1114+8us; and (b) numerical isopycnics (upper half) and
the corresponding adaptive grid (lower half) for M; = 1.5 and at ¢t =
T 7P

Sequential numerical isopycnics and adaptive grids of shock wave
propagation in the circular reflector for M,=1.5. .............

Shock wave focusing for M, = 1.50, P, = 26.7 kPa: a.b. -25 us;
c.d. 0 us; e.f. 25 us : a.c.e. are experimental interferomgrams, and

b.d.f. are isopycnics and corresponding adaptive grids obained by
the VAS2D ...

Sketch of the shock wave system in Fig. 5.6ae, corresponding to
Fig. 5.7a and b respectively. ......... .. ... ... L.

Comparison of density distributions along the centerline: a. t =
—25us, corresponding to Fig. 5.6a; b. ¢t = 0, corresponding to
Fig. 5.6b.

Comparison of density distributions along the centerline (Continued):
c. t = 25us, corresponding to Fig. 5.6¢; d. numerical density
distributions at the three time instants. .................. ...

xi

135

136
145

146
147

149

152

153

154

156

157



Chapter 1

Introduction

Flow fields including shock wave interaction with bodies are characterized by dis-
parate length scales. Shock wave has a thickness of a few mean free paths or the
order of 10~"m, the boundary layer in shock tube is around 10~3m thick, and the
size of the macroscopic body is about 1073m — 10m. Numerically a uniformly fine
mesh covering every length scale is impractical. To be able to efficiently simulate
these phenomena together, a mesh should ensure that the short-length phenomena
are not very under-resolved and the long-length phenomena are not over-resolved,
or the mesh should be allowed to adapt to these length scales. Unstructured data
structure is therefore required to keep the changing topology due to the adaptation.
In addition, for complicated geometry, unstructured mesh generation is far more

automatable than the tasks associated with structured mesh generation.

An unstructured adaptive solver for numerical simulation consists of three pri-
mary parts, pre- and post-processing, flow solver, and grid adaptation procedure.
In interaction of shock wave with bodies, the flow patterns, such as shock wave,
slipstream, and vortex, are changing with time. An adaptive mesh has to follow the
time-dependent flow patterns, thus the flow solver and grid adaptation procedure
are closely coupled. This imposes great difficulties in implementing the unstructured

adaptive solver with high efficiency on supercomputers.

Numerical simulation is inevitably linked to computing issues. Vector and par-
allel supercomputers provide much of the computing power that has hindered the

computation of complex unsteady flows. The vectorization of a flow solver on un-



structured grids without mesh adaptation is not very challenging. It is accomplished
by either sorting or coloring the elements into groups, so that within each group,
no element accesses the same node. In general, sorting and coloring procedures
themselves can not be efficiently vectorized. For an unstructured grid without mesh
adaptation, sorting and coloring are just conducted once before the computation
of the flow solver. In this case, the issue of their efficiency is trivial, and one may
even design a time-consuming sorting method to optimize any unstructured data
structure for an object machine. Unfortunately it is totally different for a grid with
local mesh adaptation, because the local adaptation changes the topology of the ini-
tial grid. The data structure after adaptation may completely change the sequence
which is provided by sorting and coloring procedures. Consequently, the sorting or
coloring has to be conducted after every mesh adaptation, not surprisingly a very
costly procedure. On the other hand, local mesh adaptation is associated with ex-
tremely complicated logic. The logic often contains data dependency which inhibits
vectorization, so that the overheads of mesh adaptation may become relatively very
large when the flow solver is computed by vector and parallel processing. On the
Cray C90, a non-vectorized mesh adaptation procedure may require the computer
time 10 times as the flow solver on single processor mode, and around 50 times us-
ing eight processors [1]. Low efficiency of mesh adaptation is somewhat tolerable in
computation of steady flows, because few adaptations are sufficient. However, mesh
adaptation has to be frequently performed in unsteady computation, so that one
might even question that whether the efficiency is really gained by such expensive

mesh adaptation compared with a uniform grid.

Therefore to be able to efficiently simulate shock wave interacting with bodies,
it is required to underlie the flow solver and mesh adaptation by an essentially vec-
torizable data structure under which both the flow solver and mesh adaptation are
able to be performed by vector processing. A novel essentially vectorizable data
structure for any unstructured quadrilateral and hexahedral grids is proposed in the
present thesis. The data structure is a bi-directional reference between cell and face
with a strict ordering method. The ordering is kept during mesh adaptation, there-
fore no sorting or coloring is necessary. Furthermore, a flow solver using the finite
volume method under the data structure can perform local and global operations

by vector processing; locally obtain necessary connectivity information without any



logic, and globally scan all control volumes without nested loops. The data struc-
ture with these properties considerably decreases the overheads of both handling
unstructured grids and adapting grids. Thus it is highly efficient for simulating

unsteady and steady compressible flows with shock waves.

To construct an efficient unstructured solver, not only the data structure and grid
adaptation should be efficient, but also the scheme should integrate the conservation
laws economically. From the viewpoint of space discretization, the central schemes
are more efficient and convenient. However all the second-order central schemes of
the Lax-Wendroff family [2], [3] often generate oscillations around discontinuities.
In order to remove the undesirable oscillations and to satisfy the entropy condition,
artificial viscosity is included in these schemes. During the past decades many efforts

have been made to attenuate these oscillations [4], [5], [6].

The other alternative lies in upwind discretizations. The upwind schemes utilize
concepts of characteristic waves to determine the direction of spatial differencing. On
an unstructured grid using the finite volume method, the flow variables are assumed
to be constant or linearly distributed in control volumes. It leads to interactions at
the interfaces between the control volumes. At each interface, the states on either
side can be interpolated constantly or linearly from the variables at two neighboring
control volumes. This defines a one-dimensional Riemann problem at each interface,
which can be approximately solved by the Roe method [7] or the Osher method [8].
Although many successful codes have been developed utilizing this strategy, the
true physics of multi-dimensional system are not modeled correctly, as waves are
only allowed to propagate in directions of interfaces. This causes an inconsistency
in the decomposition when the dominant characteristic in the flow field lies oblique
to the grid. A classic example of this is that a simple slipstream oriented oblique
to the interface. Because the Riemann solver is solved in the direction normal to
the interface, the oblique slipstream will be decomposed as a shear aligned along
the interface, plus non-physical acoustic waves. Over the past decade a substantial
effort has been put into the development of a truly multi-dimensional method to
eliminate the dependence of interface alignment. The early idea to improve the
situation is the rotated Riemann solvers. In this approach, fluxes are still obtained

by solving the Riemann problems at the interfaces, but in directions determined by



the physical nature of local flow [9], [10]. The more sophisticated modeling further
chooses a multi-dimensional wave-pattern of more than three waves to calculate the
fluxes at the interfaces [11], [12].

As far as artificial viscosity is concerned, a fundamental feature of the oscillation-
free upwind schemes is that they ingeniously introduce first-order dissipation! around
discontinuities by nonlinear limiters, and this dissipation is naturally adjusted for
a slow or a fast characteristic wave since the upwind schemes involve a matrix
dissipation coefficient. Because of the introduction of the first-order dissipation, a
hyperbolic equation changes to a parabolic or elliptic one. In both cases, the numer-
ical process is dominated by the artificial viscous effects as well as wave convection.
Consequently, numerical results are not very sensitive to any Riemann solver or wave
direction. As is well known, an upwind scheme can be written as a central difference
scheme plus dissipation terms. This suggests that a central scheme may be free
of oscillations by directly adding first-order nonlinear dissipation that should treat
waves with different speeds as equals, or nearly as equals. In the present flow solver,
the Lax-Wendroff scheme is combined with conservative smoothing, which is the
first-order artificial dissipation. The nonlinear coefficient of smoothing is controlled
so that the scheme is total variation diminishing (TVD) at least for the linear scalar
case. In solving system of the conservation laws, unlike most unstructured solver
creating a discontinuity at interface, the present approach assumes the variables are
continuous and of finite spatial gradients. The states at interface are then calculated
from the variables and their gradients by locally solving the multi-dimensional Euler
equations instead of the Riemann solvers. In smooth regions the approach is second
order accurate in both space and time. Advantages of the approach are, besides
being cheap in arithmetic operations, it resulting in a compact stencil on structured
and unstructured grids, and being truly multi-dimensional without recourse to the

Riemann solver.

Although numerical simulation may provide all physical quantities some of which
are difficult to be measured experimentally, high-resolution experiments are indis-

pensable to study physics of complex flows and to set a standard that numerical

'In the thesis the order of dissipation is mentioned according to the coefficient of the second-
difference effective viscosity or dissipation term. Any linear monotone scheme approximates solu-
tion of a viscous modified equation with the first-order dissipation term [13].



solutions should match up to. Holographic interferometry is just a method to mea-
sure quantitatively and non-invasively compressible flows. In two-dimensional flows
if the real gas effect is neglected, fringes on interferograms correspond to isopycnics,
so that this technique is useful to obtain the whole of density distribution of a flow
field. There is no difficulty in resolving fringe spacing in a region where densities
vary continuously. However, it is not straightforward to evaluate the density jump at
shock waves, because the fringes there are so densely packed and sometimes beyond
the limit of photographic resolution. A possible way of evaluating the density jump
at the shock wave is to adopt the result of reliable numerical simulations. In this
thesis, the density distribution is successfully estimated by simply counting fringes
on interferograms and combining with the numerical result that is obtained by an
adaptive solver. The technique is applied to quantitatively analyze shock wave fo-
cusing in a circular reflector. It is found that the highest density appears after the

collision of triple points, not at the point as one usually expected.

The thesis is organized as follows:

e Chapter 1 is a brief introduction;

e Chapter 2 analyzes the Lax-Wendroff scheme with conservative smoothing on
structured grids. The approach is first shown to be TVD for the scalar wave
equation, then extended to 1-D and 2-D Euler equations. Numerical tests and
comparison with some other TVD schemes are also given. The approach is

coupled with the finite volume method and extensively tested in Chapter 4;

e Chapter 3 is devoted to the essentially vectorizable data structure for unstruc-
tured quadrilateral and hexahedral grids. The ordering method of the cell faces
is described and proven here. The practical efficiency of the data structure for

the quadrilateral grid is shown in Chapter 4;

e Chapter 4 presents a complete vectorizable adaptive solver on quadrilateral
grids. This general-purpose solver is able to simulate unsteady/steady, in-
viscid/viscid compressible flows. An essentially vectorizable data structure
(Chapter 3) underlies the flow solver and mesh adaptation. High efficiency of

the solver on the Cray C90 is quantitatively demonstrated. A variety of nu-



merical simulations of shock interacting with different bodies shows that the

scheme is reliable and problem-independent;

Chapter 5 reports a study of shock wave focusing in a circular reflector by
experimental and numerical methods. The image data processing partially
supported by the numerical simulation is successfully applied to the shock tube
experiment, in which very delicate shock wave interactions are well resolved.
It is found that apparent shock wave focusing is created by the collision of
triple points, however, the peak density appears at the time instant after the

triple points merge at the centerline.
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Chapter 2

On the Lax-Wendroff scheme with
conservative smoothing

2.1 Introduction

Consider the initial value problem for the scalar wave equation,

or, letting ¢ = 0f/0u,
U + cug =0 (2.2)
with discrete initial values u_ oo, -+, U, -+, Ui at nodes z = iAz. A solution of

the scalar equation has the following monotonicity property as a function of ¢ [1]:

1.  No new local extrema in x may be created;
2. The value of a local minimum is nondecreasing, (2.3)
the value of a local maximum in nonincreasing.

If a scheme maintains the monotonicity property, then it is said to be mono-

tonicity preserving. A scheme is said to be conservative if it may be written as
wl = — A firrge — fic1y2), (2.4)

where A = At/Ax is the ratio of time step At to grid size A. fiﬂ /2 is often referred
to as numerical flur. The numerical flux function f is required to be consistent with

the conservation law in the following sense

A~

fuiy -y ui) = flug). (2.5)
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Assume that At and Az tend to zero, the solution of a stable and conservative

scheme converges to a weak solution of (2.1) with suitable initial conditions.

Based on physical arguments, namely the second principle of thermodynamics,
only compression shocks are possible and expansion shocks, which correspond to a
negative entropy variation, cannot occur in real flows. Since the inviscid wave model
(2.1) does not have any dissipative mechanism, an additional condition is required
to reject the non-physical shocks. The condition is known as entropy condition. A
practical implementation of the entropy condition is adding a dissipation mechanism

via artificial viscosity or dissipation.

In one word, in solving the conservation laws a numerical scheme should be
conservative and monotonicity preserving, in addition to stable and consistent. An
exact solution of Navier-Stokes equations shows that the thickness of a shock wave
changes linearly with the physical viscosity coefficient (see for example [2] p.266).
If we try to numerically imitate the physical dissipation by an artificial one and try
to get a shock wave in a few cells, the artificial viscosity coefficient should also be a
linear function of the cell size, or the coefficient should be first order. If a scheme
is with either explicit or built-in second order artificial dissipation, mathematically
it cannot sustain a shock wave in a few cells. Appropriate first-order artificial
dissipation sufficiently prevents the appearance of spurious oscillations, and the

minimum dissipation may be designed to prevent smearing discontinuities.

2.1.1 Total variation diminishing (TVD) scheme

Following the monotonicity property (2.3), Harten [1] was able to show that the

total variation, denoted by TV (u(t)), is nonincreasing in t, i.e.,
TV(u(ty)) < TV(u(tr)) for all to > t;. (2.6)
Then, he defined a scheme is TVD, if it follows
TV (u(t")) < TV (u(t")).
Any 3-node consistent schemes can be written in the form

P = wi + CipapDiajou — CinajpAioaau, (2.7)

U;

10



where

Ai+1/2UJ = Ujyr1 — Uj;. (28)
Harten further proved that scheme (2.7) is TVD if

Ciy1/2 > 0, Ci—12 20

Cit12+Cim12 <1 (2.9)

This criterion is also necessary for arbitrarily initial profiles. It has been proven by
Godunov [3] that any linear monotonicity-preserving scheme and therefore any linear
TVD scheme is only first order accurate. It is noticed that the conditions (2.9) is not
necessary for some initial profiles; thus one may combine a second-order scheme for
the regions where the scheme is monotonicity preserving with a first-order monotone

scheme for other regions where a second-order scheme violates monotonicity.

2.1.2 The Lax-Wendroff scheme

Let u(z,t) be an exact smooth solution of equation (2.1). It will then satisfy a
difference equation approximately; the deviation is called the truncation error. Lax
and Wendroff [4] proposed a method to minimize the truncation error, which leads

to the well-known Lax-Wendroff scheme.

Expand u(z,t + At) into a Taylor series up to terms of second order:
u(z, t + At) = u(x, t) + Atuy + 1/2(At)*uy + O(A?). (2.10)

With the help of the differential equation (2.1) which u is supposed to satisfy, we

can express the time derivatives of u as space derivatives,

Uy = _f:r;
Ut = —for = —Jru = —(Cut)r = (CQUI)I; (2-11)

Note that all ¢ derivatives are exact x derivatives and therefore can be approximated

by exact x differences. Substitute namely (2.11) into (2.10), we get
u(z,t + At) = u(x, t) — (Atf — 1/2(At)*Fuy),. (2.12)
Comparing (2.12) with (2.4), one may obtain the numerical flux

firrje = F(uipaye) — 1/20P (uigr — u;) (2.13)

11



plus high order terms, where ;412 = (t;41 + u;)/2. This is just the Lax-Wendroff

scheme. For a linear wave equation, ¢ = constant, the scheme becomes

fi+1/2 = c(Uir172 — 1/200110u), (2.14)
where 0 = cAt/Az. The scheme is stable for |o| < 1.

The second term on right hand of (2.12) can be rewritten, using (2.11), At(f +
1/2Atf;), = Atf(t + 1/2At),, which leads to a predictor-corrector Lax-Wendroff

scheme, known as the Richtmyer scheme,

Uiy = Uit1/2 — 1/20\Ai 112 f,

fivre = F(ufyy ). (2.15)

For the linear wave equation, the Lax-Wendroftf scheme is the unique 3-node
finite difference scheme with second order accuracy. However, it is not TVD. To
show this, inserting (2.14) to (2.4), one may rewrite the Lax-Wendroff scheme, in
the form of (2.7),

ultt = + (=0 /24 0% /2)Aiyajou — (/2 + 0 /2) Ay ju. (2.16)

Then

Citi2 = —0/2+ 02/27

Ci,1/2 = 0'/2 —|—O’2/2.
Both Ciy1/2 and Cj_y/, are possibly negative for —1 < o < 1, therefore the Lax-
Wendroft scheme is not TVD. It generates oscillations behind a shock discontinuity.
As far as artificial viscosity is concerned, the uniformly second-order Lax-Wendroff
scheme provides artificial dissipation less than first order, consequently it cannot

support a physical shock transition in a few grid cells.

To be able to construct a TVD Lax-Wendroff scheme, additional first-order dis-
sipation is required. In Section 2.2.1, Roe’s formulation of adding dissipation is

reviewed, and the proposed method will be discussed in Section 2.2.2.

2.2 The scalar case

2.2.1 The TVD Lax-Wendroff scheme via limiter

The first TVD Lax-Wendroff scheme was derived by Davis [7], soon Roe [6] refor-

mulated Davis’ scheme and included a new class of TVD schemes. Yee [8] further

12



extended the idea to implicit methods. In this section, Roe’s generalized formula-
tion of the TVD Lax-Wendroff scheme is reviewed. The formulation is basically the
Lax-Wendroff plus a conservative dissipation term designed in such a way that the

final scheme is TVD. For ¢ =constant, his scheme is written as

U;?Jrl = u; + <—O'/2 + 02/2)Ai+1/2u — (0'/2 -+ 0'2/2)Ai_1/2u
+1/2[o|(1 = [o)(1 = Qit1/2)Ais1/2u (2.17)
—1/2|0'|(1 — |O'|)(1 — Qifl/g)Aifl/QU.
The last two terms represent an additional conservative dissipation, and the first
terms are just the Lax-Wendroff scheme (2.16). The limiter Q; 1 /2 depends three

consecutive difference A;_;/ou, A;iqou and Ay 3/5u and is of the form

Qiy1/2 = Q(rilyzvritlﬂ)’

where
,ri_—s—l/Q = Ai_l/QU/AiJ’_l/QU, r;:—l/Q = Ai+3/QU/Ai+1/2u.

If one assumes both @) and @) /r are always positive, then a set of sufficient conditions
for (2.17) to be TVD is

Q <2/(1—lol),
Q/r <2/lol. (2.18)
Some examples of limiter () are
@ = minmod(1,r ") + minmod(1,r") — 1, (2.19)

Q = minmod(1,r~,r"), (2.20)
where the “minmod” function is defined as

min(1,7%), ¥ >0,

minmod = { 0. <0

More examples of the limiter ) may be found in [10].

2.2.2 The TVD Lax-Wendroff scheme via nonlinear artificial viscosity

Consider a numerical flux for equation (2.2) with ¢ = constant

~

fivrye = cluivrye — 0(1/2 = p)Aiyrjpu] — pAivapu/A, (2.21)
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where p is an artificial viscosity parameter.

Lemma 1. The scheme (2.4) with flux (2.21) is monotone under the CFL
condition |o| < 1 if and only if |o|/[2(1 + |o])] < p < 1/2.

Proof:  Combining two equations in (2.21), one may rewrite it as
u?“ =u; + AAi+1/2U, — BAi,l/gu (222)

where
A=—0/2+0%/2+ p(l —o?),
B=0/2+0%/2+ u(1—0?).

A monotone scheme requires (see, (2.9)),

(2.23)

A>0; B>0; A+B<1.
A > 0 leads to
A=—-0/21-0)+pu(l-0*>0

(1-0)((l4+0)—0/2)>0
0> /(1 + o)

B > 0 leads to
B=0/2(1+0)+ul—-0?) >0
(14+o0)((l—0)+0/2)>0
p=—o/2(1-o0)).
For —1 <o <1, both A> 0 and B > 0 are thus equivelent to
p=> ol /[2(1+[a])].
A+ B <1 leads to

A+B=o0*>+2u(l-0* <1
p<1/2.

This completes the proof of Lemma 1.

Remark The truncation error of scheme (2.21) is
A
14

Up + Cuy (1= 0ty + -+ -



Clearly, parameter u is a sort of artificial viscosity coefficient. A few central and

upwind schemes can be written in this form, for instance,

i schemes
0 Lax-Wendroff scheme
lo|/[2(1 + |o|)] | First-order upwind scheme
1/2 Lax-Friedrichs scheme

These values p of the Lax-Friedrichs scheme and the first-order upwind scheme
are just the upper limit and lower limit of |o|/[2(1 + |o])] < p < 1/2. Therefore in
monotone schemes written in (2.21), the Lax-Friedrichs scheme is the most diffusive,
while the upwind scheme is the least one. It is very interesting that the central
scheme (2.21) may trigger artificial dissipation as less as the upwinding scheme do
by choosing the lower limit value. Even choosing p = 1/4 scheme (2.21) is half
as diffusive as the Lax-Friedrichs scheme. For convenience, we hereafter use the

notation,
pup = |0]/[2(1 + |o])], (2.24)
where the subscript “up” denotes the viscosity coefficient of the upwind scheme.

Note that p = 0 corresponds to the second-order Lax-Wendroft scheme. This
property provides a simple way, by switching x to be 0 in smooth regions, to extend

this sort of monotone scheme to be second order, which will be discussed later. §

Remark Actually, all 3-node finite difference schemes may be expressed as the

central scheme (2.21). A 3-node scheme is

ul™ = Ciquimq + Ciuy + Ciprtiyg. (2.25)

(2

To be able to consistent with equation (2.2) up to the first-order, coefficients C; 1,C;
and Cj,; should satisfy
Cii+Ci+Cip1 =1, (2.26)

Ci—i—l — Ci—l = —0. (227)
Substitute (2.26) into (2.25), one gets

U?"Fl = U; — C’i_lAi,l/gu + Ci+1Ai+1/2U. (228)
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Compared with (2.22), because A — B = C;;1 — C;_1 = —o0, it is sufficient to let
A = Ci+1,
—0/2+ 0% /24 p(l — 0?) = Cip,

p=(Ciy1+0/2—0%/2)/(1—c?%). (2.29)

Therefore any 3-node scheme (2.25) is equivalent to the central scheme (2.21) with
(2.29). It is seen that Roe’s formulation (2.17) corresponds to

i= (1 - Q). (2.30)

Remark For nonlinear equation
Uy + f(u)l’ - 07
the flux in scheme (2.21) is able to be calculated by a predictor step:

7{?+1/2 = Uit+1/2 — A(1/2 — N)Ai+1/2f7

2.31
fivr2 = f<uf+1/2> - NAiH/zU/)\- ( )

For p = 0, (2.31) becomes the Richtmyer scheme (2.15). This method eventually
avoids the estimation of the Jacobian matrix that is associated with a system of

conservation laws.

Remark A geometrical interpretation of scheme is shown in Fig. 2.1. It is
actually an advanced model of the smoothing method. The smoothing method first
smoothens a sharp shock to be a continuous profile, as a pre-smoothing procedure,
then conducts the Lax-Wendroff scheme on the continuous profile shown in Fig. 2.1b.
This method requires neither the Riemann solvers nor the estimation of the Jacobian
matrix, and has been extensive applied in solving 1-D and 2-D Euler equations [9].
Scheme (2.21) uses another profile, as shown in Fig. 2.1c, and conducts the two-step
Lax-Wendroft on it. This method has its built-in smoothing. The coefficient p is
just the distance from the initial profile to the profile used in calculation. In (2.31),

the term A(1/2 — ) Aiy1/2f can be rewritten as
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initial profile

built-in smoothing
c. o
Yeeneennoaoonancnaacaaanaa:

Figure 2.1. Geometrical interpretation of scheme (2.21). The coefficient u is a distance
from the initial profile to the one after smoothing. The distance is normalized by the local
jump between two neighboring nodes, say ¢ and d.

where 1/2At propagates the solution by half time step, and additional coefficient
(1 —2pu) is due to the change of gradient after smoothing (see Fig. 2.1c). Therefore
the scheme (2.21) is referred to as a smoothing scheme. If y is a constant, then it is

a linear smoothing scheme; if 1 is not constant, a nonlinear smoothing scheme. §

Lemma 2. The Lax-Wendroff scheme is monotonicity preserving at nodes w; for
[ < i < k under the CFL condition |o| < 1 if for all nodes i, | —2 < i < k + 2 hold

A; A;
0< 20 <0< 20 < (2.32)
Ai_l/gu Ai—i—l/?“
where ry = 2+ 2/|0].
Proof:  One should prove
AL
R= 2>y, (2.33)
Ai+1/2u

The Lax-Wendroff scheme gives

UJT.hLl = U; + (—0'/2 + 02/2)Ai+1/2u — (0'/2 + 02/2)Ai_1/2u,

(2
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then

A, A
R=(1-0%+(~0/2+0%/2) 522 4 (5/2 4 02 j2) 521
Ait1/2 AVERYD)

For o > 0, given the ratio Ai_l/gu/AiH/g > 0, one has

R 2 1—0'2—|—(—0'/2—|—O'2/2)Ai+3/QU/Ai+1/2
> 1 0%+ (—0/2+02/2)r (2.34)
= 0.

Similarly for o < 0, given the ratio A;3/2u/Ait1/2 > 0, one has

R > 1-0%+ (~|o]/2+ 0%/2)Ar 1j2u/Assys
> 1- 0%+ (—|o]/2+ 02/2)rq (2.35)
= 0.

This completes the proof of Lemma 2.

Remark Condition (2.33) is weaker than condition

ut —

0< ———— <1, (0 >0). (2.36)
Ai—l/Qu

(2.36) leads to 75 = (2 — |o| — o) /(|o| — 0?), but not ro = 2/|o| + 2. It is easy
to show r§ < 1y for |o| < 1. A limiter satisfying condition (2.33) is therefore less
diffusive than that satisfying (2.36).

Corollary 1 'The Lax-Wendroff scheme is monotonicity preserving at nodes u;
for I < i < k under the CFL condition |o| < 1 if for all nodes [ — 2 < i < k+ 2 hold
i+ uion — 2w

(bi = g ¢max7 (237)

€0 + Uit — Ui1|

where ¢ is an infinitely small positive value used when w; 11 —u;—1 = 0, and Ppax =
(7’0 — 1)/(7‘0 —+ 1)

Proof:  Note that ry > 4 for |o| < 1, then one has (ro — 1)/(ro + 1) < 1. Using the

notation (2.8), one may rewrite relation (2.37) as

_ ’Ai—i-l/Qu - Ai—1/2U| < ro—1
g0+ |Aiprjou + Ay_ypoul T ro+1

%

<1 (2.38)
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For A;_1/uliiq1u < 0, it is easily seen that ¢; > 1, thus violates inequality
(2.38).

Let r = max (Ajr10u/A; 10w, Ni_10u/Niy1ou) > 1, Lemma 2 requests that

one should prove r < ry, which is equivalent to, for » > 1,

r—1 ro— 1
< )
7’—|—1_7’0+1

or
’T—1| ’T'O—l

’7’—’—1’ _7’0—|—1.

(2.39)
Since r is equal to either A;iyou/A; 1w or A;_1/5u/Ai11/0u, in both cases
inequality (2.39) leads to

|Ai+1/2U - Ai—1/2u| < ro— 1
|Aiiipu+ A qppul ~ o+ 17

If |Aifiou + Ajqoul = 0, there are two possibilities. One is A;yqu =
—A;_1ou = 0, then ¢; = 0 because of the small positive 9. Another is A;y/pu =
—A;_10u # 0, i.e., they change sign, then ¢; = |A;p10u — Aj_1/0ul/go. Given a
sufficiently small &g, one has ¢; >> 1, thus violate inequality (2.38). This completes
the proof of Corollary 1.

Remark The ratio ¢ in (2.37) plays an essential role in limiting procedure.
Fig. 2.2 shows five representative stages of ¢. For any linear function, ¢ is always
equal to 0; for a monotone function, ¢ is not larger than 1; the critical case is a
monotone function with sharp changes, then ¢ = 1; if there is an extremum in
a function, er at the extremum is greater than 1; the worst case is an oscillation
with wave length 2Ax, the ratio ¢ then approaches infinity. Therefore, the ratio
¢ is a quantitative indicator of a smooth function or an oscillating function, and
the smooth regions or the oscillating regions in one function. The critical value
¢=1 corresponds to shock discontinuities. As it is generally known that the Lax-
Wendroft scheme generates oscillations near a discontinuity, one can conclude that
¢ should be close to 1. This agrees with that the upper limit, (ro —1)/(ro + 1),
has the minimum value 0.6 for |o| = 1, and approaches the maximum value 1.0 for

very low CFL number |o|. It can be easily proven by an algebraic method that a
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' d <1

o >1

Figure 2.2. Five representative stages of ¢

sufficient and necessary condition of a monotone sequence is that ¢ < 1. Note that
¢=1 or ¢ = oo is independent of the jump of a discontinuity or an oscillation. It
is an asset to be able to compute discontinuities with different strengths, and to

remove various oscillations using the same indicator.

Compared with the conventional smoothness detector, such as
r= Ai+1/2U/Aze1/2U,

the indicator ¢ has two advantages. One is that ¢ is always positive, so that the
possible zero denominator is reliably solved by introducing an infinitely small value
€0, say, €0 = Az?. Another advantage is that indicator ¢ is linearly increased from 0
to oo when a solution changes from smooth regions to oscillations regions. It has no
negative values as r do. This property will simplify logic that is built in a limiter.
Actually ¢ is often used in adaptive mesh refinement as an error detector. Since
a high-order scheme turns on its built-in artificial dissipation using a limiter, the
scheme degrades to be first order in some regions. Using ¢ in the limiter for the

scheme and using it as an error detector for an adaptation procedure, assures that
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fine grids are distributed around regions where the scheme has first-order truncation
errors, thus greatly enhances global accuracy and adaptation efficiency. The method

is indeed applied in following chapters. §

Remark The ratio ¢; may be expressed as, in a continuous form,

LW Az?
¢=|2 -

u' Ax

On the other hand, the Taylor series of a continuous function is
1
w(z + Az) = u(z) + u'Azx + §u"Ax2 + -

It is seen ¢ is just the ratio of the second-order term in the Taylor series to the
first-order term. Corollary 1 suggests that the Lax-Wendroft scheme may violate
monotonicity for ¢ > 0.6, that is, the second order term has the same order as
the first order term in the Taylor series. A finite difference scheme always assumes
that a higher order term should be less than a lower one. From this point of view,
the Lax-Wendroff scheme violating monotonicity or generating oscillations is due to

unsuitable truncation of the Taylor expansion.

Let’s switch the linear smoothing scheme to the Lax-Wendroff scheme, in a

nonlinear way, by setting

0, Pigiy2 < oo,
M_{ g, otherwise, (2.40)

where ¢; 1/ = max (¢;, $i+1), and

_ ro(l—2pp) — 1
o = .
ro(1 = 2p0) +1
Lemma 8. The smoothing scheme with nonlinear coefficient (2.40) is mono-

tonicity preserving under the CFL condition |o| < 1 if 1, < po < 1/2.

Proof Without losing generality suppose left nodes of ¢, and node ¢ belongs to a

smooth region, ¢ < ¢y; while right nodes a shock region, ¢ > ¢,. The flux through
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Smooth Region Shock Region

i+2

Figure 2.3. Sketch of the transition region between the smoothing scheme and the Lax-
Wendroff scheme. FS and FMW denote the fluxes of the two schemes, respectively.

any interface is either the flux of the Lax-Wendroff scheme or the flux of the linear
smoothing scheme, as shown in Fig. 2.3. According to Lemma 1 and Corollary 1 the
Lax-Wendroff scheme in the smooth region and the linear smoothing scheme in the
shock region are monotonicity preserving, therefore it is sufficient to prove that in
the transition region of two schemes, the hybrid scheme (2.40) is still monotonicity

preserving,i.e., one should prove (a). between nodes ¢ and i — 1

un+1 _ un+1
R =—— "1 >0 2.41
! Aiipu ( )

(b). between nodes ¢ and ¢ + 1, if node i 4 1 is an extrema, A; 5u/A; 11 /0u <0,

. _ ntl . _ ontl
R, = Uit1 — Uiv1 >0; Rs= Uitr — Ui > 0; (2.42)
Ai+1/2u Ai+1/2u

(c). between nodes ¢ and i+ 1, if node ¢ + 1 is not an extrema, A; 3/5u/A;1/0u > 0

ntl o ntl
R, = ditt U 5 (2.43)
Ai+1/2u

Using the notation in (2.23), one has

u?jll = Ujy1 + AAZ'J’_:-;/QU - BAi+1/2u7
upth = ouiyyy — 0 /20 pu 4 Augyy — Bu, (244)

U?_Jrll = Uji—1 + (—0'/2 + 0'2/2)A7;,1/2 — (0'/2 + 0'2/2)A7;,3/2.
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Since ¢; 1, ®; < ¢g < 1, then one has

ro(1 —2p0) > Ai_gou/Ni1/0u >0,
To(1 = 2p0) > Aiy1jou/Ai_qou >0,
7’0(1 — 2/,60) 2 Ai_l/QU/Ai_H/QUJ > 0.

We first prove (a) here:

R, = [ui+ OUi—1/2 — 02/2Ai—1/2u + Auiy — By,
—(ui_l + (—0'/2 + 0'2/2)Ai—1/2u - (0-/2 + 02/2)Ai—3/2u)]
/Ai71/2u
= 1-0’40/2+

(2.45)

[(0'/2 — B)ul —+ 0'/21117;,1 + Auiﬂ —+ (0'/2 —+ 02/2)Ai_3/2u]/Ai_1/Qu

= 1- 0'2 + [AAi+1/QU + (0'/2 —+ 0'2/2)Ai_3/QU]/Ai_1/QUJ
The condition A — B = —o has been used in the last step. Since A > 0, then

R1 Z 1-— 0'2 + (0'/2 +02/2)Ai,3/2U/Ai,1/2U.

For ¢ > 0, then R, > 0;

for o <0,
R1 Z 1—0'2— 1/2|0’|(1— |U|)Ai_3/2U/Ai_1/2U
> 1-0"—1/2|o(1 - |o])ro(1 — 240)
= 2u(1 —0?)
> 0.
Prove (b) here:
RQ = (—AAi+3/2u + BAi+1/2U)/Ai+1/2u

B — AAi+3/2/Ai+1/2U
0;

AV

R3 = 1- (O'Uifl/g — 0'2/2A7;,1/2U, + Aui+1 — Bui)/AiH/gu

1—A— [(A - B + 0'/2)1117, + 0'/21117;,1 — 02/2Ai_1/2u]/Ai+1/2u
1 — A —|— (0’/2 —|— 02/2)Ai_1/2U/Ai+1/2U.

For 0 > 0, then R3 > 0;

for o < 0,
Ry = 140/2—0%/2—po(1—0%)+ (0/2+ 0%/2)Ni_1/0u/DNiy1pu
> 14+0/2—0%/2 — (1 —02) + (6/2 + 02/2)ro(1 — 240)
= 1+40/2—0%/2—(1— pp)(1 —0o?)
> 1+40/2-0%/2— [L—|ol/(2(1 + o)1 - 0?)
= |1|—|a]/2—02/2—(1—3/2]0!4—02/2)
> 0
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Prove (c) here:

Ry = [uiy1 +AAi50u — BA 1 0u
—(ul + Uui,1/2 — 0'2/2A7;,1/2U, + Aui+1 — Bul)]/AlH/gu
> 1-B—- A+

[(B —A- 0'/2)u7, — 0'/2u7;,1 + 02/2Ai_1/2u]/Ai+1/2u
= (1—0%)(1—2p0) + (0/2+ 02 /2)Aiy pu/Apyr pou.
For ¢ > 0, then R4 > 0;
for o < 0,

Ry = (1—02)(1—2p0) — 1/20](1 — |o) A1 jou/Asy jpu
(1= 0)(1 = 2p) — 1/2|o|(1 = |o])ro(1 — 2u0)

0.

vl

This completes the proof of Lemma 3.

Remark For a hybrid method which combines the Lax-Wendroff scheme and
the linear smoothing scheme through the form of (2.40), Lemma 3 states that one
should switch the Lax-Wendroft scheme to the smoothing scheme when ¢ > ¢,. Not
all monotone smoothing schemes expressed as (2.21) can be combined in this way.
Coefficient (2.40) will never switch to p = 0, when ¢¢ < 0, i.e.,

T0<1—2ILL())—1 SO,

po = (2+ o)/ (4 +4lo]) = 3/8. (2.47)

For instance, the Lax-Friedrichs scheme corresponds to py = 1/2, so that it can not

be switched to the Lax-Wendroff scheme while preserving monotonicity.

Since for © = 0 the nonlinear smoothing scheme is exactly the Lax-Wendroff

scheme, it is second order accurate in the regions where ¢;;1/9 < ¢o. 9

Remark For any 0 < pg < 1/2, ¢q is always less than ¢p,... It suggests that in
the transition region ¢y < ¢ < @uax, the Lax-Wendroff scheme is still monotonicity
preserving and thus artificial viscosity is not required. The artificial viscosity has to
be turn on there just because the jump in coefficient (2.40). Note that for py = fhup,
¢o corresponds to r = 2/|o|. Compared with (2.30), the nonlinear coefficient can be

rewritten as
= :uuzz(l - Q)? (2'48)
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where,

0, otherwise.

0- { 1, ¢ir1/2 < do,

(2.49)

One may design a continuous coefficient x, by using (2.18) for py = pty,. Consider

a limiter
. 2r
Q = max(O, mln(L m))a
o

which leads to
. 2
p = fup[1l — max(0, min(1, Hriﬂ/g))],

where
1 — @it1/2

Tit1/2 = 11 ¢¢+1/2'

Consider a more general coefficient

0, ¢i+1/2 < @e,
pw=1< ¢ otherwise

po,  Pir1j2 > 1
or simply,

p = min[po, max(0, u)]

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

where p; denotes artificial viscosity coeflicient in transition regions, and ¢, represents

some critical value.

Lemma 4. The smoothing scheme with nonlinear coefficient (2.54) is mono-

tonicity preserving under the CFL condition |o| < 1 if

po — (L —2p0)riv1/e < e < po

with iy, < po < 1/2.

Proof 1t is sufficient to prove that

n+1 n+1
U, —U;
R= 4L 7 > 0.
Ai+1/2u
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Since
U?jf = Ujy1 — )‘(fi+3/2 - fi+1/2)
and
up ™t = — )\(fi+1/2 - fiq/z),
one has
R=1+ )‘(_fi+3/2 + 2fi+1/2 - fi71/2)/Ai+1/2u-
Substituting (2.21) with p;15/2, ftiy1/2 and p;_1/o for fi+3/2, ﬁ+1/2 and fi,l/g respec-

tively, gives

R =1+ {-0uirzn +[0%(1/2 = piyasa) + pivasa Digappul/Aiyryjou
+{20uiy172 — 2[02(1/2 = pit1/2) + pit1/2) Divrou}/Digajou
H—oui1ys + [0%(1/2 = pi—1)2) + pri1/2)Di—12u} / Div1)ou,

R =1+[0%/2=0/2+ piyspa(1 — 0?)rfy )y — 2(0° /2 + piv12(1 — o))
+[0?/2 4 0/2 + piajo(1 = 0®)ry o,

thus
=== 2na) +[0°/2 = 0/2 4 il = Ariae (g g
+o?/2+0/2+ pi1pp(1 -0 )]ri+1/2'
1) By setting ;4172 < po, one has
R=(1-0%)(1=2u)+[0/2 = 0/2+ pirap(1 = 02)]r,, )y
+0?/2+0/2 4 pi1p(1 = 0*)riyy o
For o > 0, given the ratio Tiv1/a > 0, it is sufficient that
(1= 0?)(1 = 2p0) + [0°/2 = /2 + pisapp(1 — 0?)rf 1 2 0
(14 0)(1 = 2u0) — [0/2 = (14 0)pisapalryn = 0
(1= 2p0) = (bup — Hinas2)T 115 2 0
Hiy3/2 > Hup — (1 - 2M0)/T:5-1/2
Mit3/2 = Hup — (1- 2N0)7’i_+3/27
or,
Hit1/2 2 Hup — (1- 2/L0>T;+1/2; (2.57)
similarly for o < 0, given the ratio ’r’;rl/2 > 0, (2.56) leads to
Hiv1/2 2 Pap — (1= 200)T 1 - (2.58)
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It is sufficient for inequalities (2.57) and (2.58) that

Pit1/2 2 Hup — (1- 2M0)Ti+1/2- (2.59)

2) On the other hand, given o > 0 and the ratio r;,, », > 0, relation (2.56) leads to

()

=y

VIV IV IOl IV
—_

—_
|
Q

— 2tit12) + [0%/2 — /2 + pivse(1 — 02)]7}11/27
1= 2pi11/2) = (Hup — Mi+3/2)7"itrl/2]v

1- 2,ui+1/2) - (1 - 2NO)Ti+1/2TI|_1/2]a

L —2pi1172) — (1= 2p0)],

Ho — Mi+1/2)a

RO A~ o~ —~ —
—~ = = =
o
9 9 9
[N} [\ N
MO — — —
—_ ==

1l—-0o
where (2.59) and Ti+3/2’f’;:_1/2 < 1 are used; then it is sufficient for R > 0 if

Miv1/2 < Ho- (2.60)
The case of o < 0 gives the same results. Let ., < o < 1/2, a sufficient condition
for (2.59) and (2.60) is

po — (1= 2p0)riv1se < pe < po.

This completes the proof of Lemma 4.

By choosing the lower limit for p, the viscosity coefficient (2.54) becomes

p = min[pg, max(0, o — (1 — 2p0)7i41/2)]- (2.61)

For convenience let
It can be shown that the coefficient (2.61) is identical to (2.51) for a = 1 or fig = fiyp-

To be able to guarantee the scheme with the coefficient (2.61) is second-order ac-
curate, the scheme should switch to the Lax-Wendroff scheme in smoothing regions.
Because for 7;41/2 = 1 coeflicient ; must be 0, one has pg <1 /3. Using notation «,
a sufficient condition is

1<a<4/3. (2.63)
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2.2.3 Numerical experiments

We briefly summarize the results in previous sections for solving equation (2.1). The
Lax-Wendroff scheme can be made to be TVD by adding artificial dissipation. The
scheme is a conservative one,

uPtt =l = A(fiyaj2 — fiap2), (2.64)

with the numerical flux

7{?+1/2 = Ujy1/2 — A(1/2 — N)Ai+l/2f7 (2.65)
fivpe = F(W1)s) — pligapu/A,

where p is a smoothing coefficient. Its geometrical meaning is shown in Fig. 2.1c.
A variety of schemes may be designed by defining coefficient . One may transform

Roe’s symmetric TVD Lax-Wendroff by following

1= (1 - Q). (2.66)

where @ is a limiter, for example limiter (2.19), (2.20) or (2.50). A somewhat

generalized coefficient is

p = min(po, max(0, po — (1 — 2p0)7ri11/2)], (2.67)

where o = oy, and /o is defined as (2.52). The scheme (2.64) (2.65) with the
coefficient (2.67) is monotonicity preserving and second order accurate for 1 < a <
4/3. We remark that o = 1 is equivalent to Roe’s symmetric approach using limiter
(2.50) in solving linear scalar equations. Although « = 1 corresponds to the least
dissipation, a slightly larger « is able to suppress the nonlinear instability in solving

nonlinear conservation laws.

In this section we present some numerical experiments to verify the performance
of the symmetric TVD scheme via smoothing. All schemes tested here are using the
form of (2.64) (2.65) with different coefficient p;

1. u =0, the Lax-Wendroff scheme, denoted by “Lax-Wendroft”,
2. [t = [Lyp, the first-order upwind scheme, denoted by “First-order upwind”,
3. 1= typ(1 — @), with limiter (2.19), denoted by “Roe’s TVD”,
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4. using (2.48) and (2.49), denoted by “Smoothing TVD A”,

5. using (2.67) with o = 1, denoted by “Smoothing TVD B”.

A square wave with 19 nodes on the top is used as an initial condition of the
linear wave equation. Fig. 2.4ab show the results of above mentioned schemes. It
is seen that the Lax-Wendroftf scheme produces post-shock oscillations, while the
first-order upwind scheme smears the solution. All nonlinear TVD schemes perform
much better. Note that the smoothing TVD B is less diffusive that the smoothing
TVD A.

Fig. 2.5ab compares the performance of two smoothing schemes under different
CFL numbers. The smoothing TVD B is more diffusive at low CFL numbers. In
Fig. 2.5b, although o = 0.5 is five times as large as o = 0.1, the difference between
their results is small. It suggests that the profile of o = 0.1 is close to the asymptotic
solution of the scheme. The smoothing TVD A performs rather irregularly, due to
its discontinuous coefficient. Therefore only the coefficient (2.67) will be applied

hereafter.
2.3 Extension to system of one-dimensional conservation laws

We are interested in the solution to the initial value problem of one-dimensional

hyperbolic conservation laws

U, +F, =0, (2.68)

where U and F are vectors with equal length. For the 1-D Euler equations, they

reads, using the conservative variables U = (p, m, ¢),

p m
U=|m]|, F=| m*/p+p |, (2.69)
2 m/p(e +p)

or, using the primitive variables M = (p, u, p),

P pu
U=|pu|, F=| puutp |, (2.70)
pe peU + pu
and
=(v=1le-m*/20)];  e=¢/p.
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Exact solution
S 0 First-order upwind
o o Lax-Wendroff
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0.5 0.6 0.7 x 0.8 0.9 1
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—— Exact solution
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Figure 2.4. Convection of a square wave, o = 0.5, 200 steps. a. results of the first-order
upwind scheme and the Lax-Wendroff scheme; b. results of smoothing TVD scheme and
Roe’s symmetric TVD scheme using limiter (2.19).
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Figure 2.5. Convection of a square wave under different CFL numbers by the smoothing
TVD scheme a. smoothing TVD A; b. smoothing TVD B. 1000, 200 and 112 steps for
o =0.1,0.5,0.9 respectively.
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System of equations (2.68) can be written as
U, + AU, =0, (2.71)

where matrix A = 0F/0U. If the eigenvalues of A are real and the eigenvectors
exist, the system of equations is hyperbolic. The numerical solution of (2.68) is one
of the most challenging problems, due to the possible appearance of discontinuous

solutions, even from smooth initial data.

Remark The Euler equations in the form of primitive variables (2.70) is able to

be simplified to
p: + puz + up, =0,
Uy + wuy + 1/pp, = 0, (2.72)
pe + Ypug + up, = 0,

which will be used to in the predictor step to enhance efficiency. q

2.3.1 Extension via the local characteristic approach

The extension technique is the so-called local characteristic approach. The approach
was originally suggested by Roe, and then generalized by Harten (see [1]). The basic
idea is to extend a scalar scheme to the system case by applying it scalarly to each of

the characteristic variables. If the system is nonlinear, it has to be locally linearized.

Denote R as the matrix whose columns are right eigenvectors of A. Then one

has

A =RAR ',

where A is the matrix of eigenvalues. Letting W = R™'U and multiplying (2.71)
by R™! gives
R'U,+R AU, =0,

W, + (RTTAR)W, =0,

W, + AW, =0, (2.73)
which is a system of uncoupled scalar equations. For the Euler equations, R, R™!
are

1 1 1 (b1 +u/c)/2 —(1/c—byu)/2 by/2
R = U—c U u—+c R = 1-b bou by |,
H—uc v?/2 H+uc (by —u/c)/2  (1/c—byu)/2 by/2
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where H = (e +p)/p=c*/(y — 1) + u?/2, and
by = (v — 1)/, by = byu?/2.
The eigenvalues A are
A = diagonal (u — ¢, u, u+c). (2.74)
Rewrite (2.73) in the scalar form, one has
WFE+ NWE =0, (2.75)

where k = 1,2, 3 denote individual equations. Each equation can now be solved by

the nonlinear smoothing scheme, following (2.21),

F']fH/Q = A§+1/2 [I/Vi]fu/z - )‘A§+1/2(1/2 - Mk)]Ai+1/2Wk/)‘a

i1/ 2.76
Wt = Wk — )‘(Filil/z - F;Iil/z); (276)
or, following (2.65) using the predictor step,
I/I/iili/2 = M/iIfH/Q _I{:)‘Af+1/2(1/2 — 1) A oW,
E]f;1/2 = A§+1/2VV;1/2 - /‘kAiH/?Wk/)" (2.77)
,n+1
W, = I/Vzk - )‘(Filil/z - F;Iil/z)-
Multiplied by R = (R'*) (I,k = 1,2,3), (2.76) leads to
Flajs = F'(Ussi) = S {RMNME (02 = i) i B
Uil’nH = Uil - )‘(El+1/2 - Fil—1/2>§
while (2.77) leads to
Uitr,ll/2 - Uil+1/2 - )‘zk: {le[A§+1/2(1/2 - Nf+1/2)Ai+1/2Wk]} )
Bl gy = FU(U ) — > [{RUE, y i s WA}, (2.79)
Uttt =l - )‘(F;l+1/2 - F’ilfl/2)7

where U! and F' denote the elements of vectors U and F. In calculating ufﬂ /2, the
local CFL number, defined as

0172l = Amax(|AF], [AZ4]),
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is used for each eigenequation.

Remark Note that U}, , is simply set to be arithmetic average (U} + Uj,,)/2.
The flux function F'(U*;11/y) is exactly evaluated by its definition in (2.69) or
(2.70), instead of ((F'(U*;) + (F'(U*;;1))/2. The former has an advantage that it is
evaluated at any location where U* is known, therefore it can be directly performed
at the center of an interface when using the finite volume method on an unstructured
grid.

2.3.2 Extension via scalar artificial viscosity

Suppose a scalar artificial viscosity p exists in solving the system of the Euler equa-
tions, by (2.79), one has

({i:,-ll/Q - Uil+1/2 —A(1/2 - ,ui+1/2)Ai+1/2Fl»

El+1/2 = F'( i) — Pit1/200412U" A, (2.80)
I,n+1 - ~

Uy = Uil - )‘(F'l+1/2 - Fil—1/2)-

(2

Let gradient U, = AU'/Az and F. = AF'/Az, (2.80) becomes,

U =U" = (1/2 = pir1/2) ALFy,

Pl = FI(U”) = p(Aa)’ /AU, (281)
l,n+1 ” ]
U™ = U= NFL s — FL ),

or, in the vector form,

U = U= (12— 1) ATF,
Fi+1/2 = F(U*) T Mi+1/2(AAm)2/AtU1‘7 (282)
U?Jrl = Uz - )\(Fi+l/2 - Fi71/2>7

where subscript i + 1/2 of some variables is removed for clearance. The first two
equations in (2.82) evaluate the flux through an interface i + 1/2 completely based
on local values and gradients. The flux evaluations depends on only two nodes ¢ and
1+1, therefore it is compact. Although as far as arithmetic operations are concerned
scheme (2.82) might not be the most efficient on a structured grid, the scheme can
be easily extended to any unstructured grids after gradient reconstruction. We will
discuss how to realize the compactness on an unstructured grid in solving multi-

dimensional flows.
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Figure 2.6. Numerical results obtained by using two scalar coeflicients: a. scalar coeffi-
cient (2.83), denoted by Max — u; b. scalar coeflicient (2.84), denoted by Min — p.

Consider the largest value in three coefficients of the eigenequations as a scalar

coefficient, i.e.,
p=max(u', p®, p), (2.83)

which is a sufficient condition to achieve TVD for all waves. Another possible scalar

coefficient is a necessary condition

po=min(y', p®, p%). (2.84)

It is clearly not sufficient for some waves which require a larger u. One may expect
that it might generate oscillations. Fig. 2.6 shows the result of a shock tube problem
by using the two scalar coefficients. It is seen that coefficient (2.83) does produce
a monotone profile, although it is somewhat too diffusive. Coefficient (2.84) gives a
result much less diffusive and more accurate in smooth regions, but generates some

visible oscillations.

Both the scalar coefficients require time-consuming calculation of the character-

istic variables W*. Two possible ways of simplification are one suggested by Davis,
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and one suggested by Roe (see the review by Yee [10]). Davis proposed a scalar
limiter via the original variables instead of characteristic variables and the viscosity
coefficient is determined by the fastest wave. Roe suggested the use of the strongest
wave. Because all primitive or conservative variables are functions of characteristic
variables, it is intuitively believed that a scalar limiting procedure via the primitive
or conservative variables should lie between (2.84) and (2.83). We propose a scalar
indicator:

S{1Uk + U - 20H/0F

¢ = =
€0 + % {|Ui’11 - Uik—1|/Uf}

, (2.85)

and the scalar coefficient p follows (2.67) with

O_fast

IU/UP - —2<1 + O_fast)v

ol = X max(|u| + ¢, [wir1| + cir1)-

All differences between variables U in (2.85) are normalized by characteristic quan-

tities UF. We may choose U to be the local conservative values,

pi = pi
m; = max(|m;l, p;) (2.86)
Ei=¢€;

where the momentum m; is slightly modified because it might be negative and zero.
In calculation we set g = (Az)?/10 to avoid division by zero. It is easily seen that

in the case of single scalar equation (2.85) becomes (2.37).

Remark One may construct this kind of scalar coefficient by following Roe’s
formulation, in the form of (2.7),

Citrja = —0/2+ /2 + p,

Ci_i2 = /24 a%/2 + p. (2.87)

The TVD region of this p is shown in Fig. 2.7b, compared with the TVD region
of the present approach shown in Fig. 2.7a. In figure a, the minimum coefficient is
a monotone function of the CFL number |o|; therefore a scalar coefficient which is
defined by the fastest wave is sufficient for other waves. However, there is an extreme

value |o] = 1/2 in Fig. 2.7b. A trouble of the existence of the extreme value is that
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Figure 2.7. TVD region of artificial viscosity coefficient p as a function of 0. a. The
proposed artificial viscosity coefficient p defined in (2.21), or more clearly in (2.23); b.
The artificial viscosity coefficient p defined by (2.87), a similar coefficient was used by
Davis. In figure a, the minimum coefficient is a monotone function of the CFL number
|o|; while there is an extreme value for |o| = 1/2 in figure b. A trouble of the existence of
the extreme value is that defining p according to a fast wave or larger |o| is not sufficient
for slow waves in solving the system of the conservation laws.

defining p according to a fast wave or larger |o| is not sufficient for slow waves in
solving the system of conservation laws. One way to solve it is, suggested by Davis,
choosing u = |o|/(1 — |o|) for |o| < 1/2 and p = 1/4 for |o| > 1/2. Unfortunately
it can be seen in the figure this method is not TVD for whole region of |o| < 1. q

The predictor step can be calculated by, denoting Uy = (U* — U)/[(1/2 —
i1 /Q)At] and using the gradients of conservative variables
P = —Myg
m; = —(2m/pmg —m®/p*py + pa) (2.88)
ef = —[((e + p)ms + mle, +pa))/p — mle +p)/p*ps],
where p, = (y—1)(e, —m/pm, +m?/(2p*)p.. (2.88) is just a reformulation of (2.68)

with (2.69) in terms of derivatives of the conservative variables.

Remark The predictor step can also be computed by (2.72), using the gradients

of the primitive variables

pr = —(pus + upz),

p; = —(Ypus + ups),
and then m, and e, are determined by

My = p*u, + u*ps,
2.90
€x =p./(v— 1) + p*uru, + 1/2(u*)?p,. (2.90)
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In general, it is not efficient to constructed the gradients of both the primitive and
conservative variables. To be consistent with the predictor step using the primitive
variables, the U*, k = (1,2,3) in the scalar indicator (2.85) is replaced by p, u and

p, and corresponding characteristic quantities are

Pi = Pi
u; = max(|u;l, pi) (2.91)
Di = pi

It is seen that two indicators using the conservative variables or the primitive vari-
ables are totally different, however numerical tests show that two indicators work

similarly in solving the Euler equations. §

2.3.3 Numerical experiments

In this section we present numerical results in solving one-dimensional Euler equa-

tions. The schemes tested are

1. extension via the local characteristic approach, denoted by “Roe”,

2. extension via the scalar viscosity using the conservative variables, denoted by
“STVD A”,

3. extension via the scalar viscosity using the primitive variables, denoted by
“STVD B”,

and the artificial viscosity coefficient follows (2.61). The local CFL number |o*| or
|o/a5| is taken as

0¥ = max(1/4, |"]),
]Uf‘”t] = max(1/4, ]Uf‘”t])

to guarantee the entropy condition. The matrix R and R™! are calculated by the

arithmetic averaged values of two neighboring nodes in scheme “Roe”.

For comparison Harten’s original TVD scheme [1], denoted by “Harten”, is cho-

sen, and Roe’s approximate Riemann solver [11] is used.

Sod’s shock tube problem with left-side and right-side values

(p7 U,p)L = (17 07 1)7
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Figure 2.8. Sod’s problem solved by scheme “Roe”, o = 1.0: a. ¢ = 0.2; b. ¢ = 0.8.
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(p,u,p)r = (0.1,0,0.125)

is tested in this section. Fig. 2.8ab is the results of scheme “Roe”. The scheme
performs similarly at two different CFL numbers 0.2 and 0.8, except a low peak for
o = 0.8 behind the shock wave. The results of STVD A in Fig. 2.9ab is almost
identical to that of “Roe”. STVD B is a little more diffusive than STVD A, but it
could suppress nonlinear peaks behind the shock front better. All these symmetric
scheme performs not worse than the classic Harten’s upwind TVD scheme as shown
in Fig. 2.11ab.

The post-shock peak appeared in Fig. 2.8b and Fig. 2.9b can be easily dampened
by choosing a larger a. A result of @ = 1.2 is shown in Fig. 2.12 . It produces the

monotone profile across the shock without smearing much in other regions.

2.4 Extension to system of multi-dimensional conservation
laws

The Euler equations in two dimensions are given by
U+F,+G,=0, (2.92)

where the conservative state vector U and the flux functions F and G are defined

as
p m n
m m*/p+p mn/p
€ m/p(e + p) n/p(e + p)

In this system, m and n are the momentum components in x and y directions,

respectively. The static pressure p is given by
p= (v =1~ (m*+n?)/(2p)].

Following the finite volume method, the change of the conservative values of a

control volume is equal to the sum of fluxes through its interfaces, i.e.

A A
U/t =U; - i > F, (2.94)

where A() is the area of the control volume, and faces denotes all interfaces which

surround the control volume. F is just the flux through one of the interfaces.
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Figure 2.9. Sod’s problem solved by scheme STVD A, a =1.0: a. ¢ =0.2; b. ¢ = 0.8.
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Figure 2.13. Computational stencil for the proposed scheme on the Cartesian grid: a.
stencil for evaluating the flux through interface AB; b. stencil for the control volume (¢, j),
bounded by ABCD.
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Fig. 2.13 shows a control volume on the Cartesian grid. The conservative vari-
ables are restored at the centroid of the control volumes, which is labeled with ¢, 5
in z and y direction respectively. The volume (i, ) is bounded by interfaces AB,
BC, CD, and DA. The fluxes through the interfaces are required to solve (2.94).
Since all interfaces can be similarly treated, we just describe the calculation of the
flux through interface AB. Let rqp = (dz, dy) is the spatial vector from A to B, and
then the outward normal of AB is (dy, —dz). Denote the spatial vector from i to j
be (Az, Ay), the flux vector through AB, F is given by

Us = U, — (12— i) AUE, + Gy, (2.95)
N Azr)? Ay)2
F =F(U})dy — G(UL)dr — 1y %dey + ug( Ayt) U,dz, (2.96)

where all variables and gradients are located at node o, the center of interface AB.

The conservative variables at node o is the arithmetic average of two neighbors,
U= (Ui + Uip)/2.

The gradients of flux function F, and G, are given by, in terms of the gradients of

the conservative variables,

_ p:+ 77’L/,0(2’rn;,j — m/ppz)
e (nmy +mn, —mn/pp,)/p (2.97)
(€ + p)(me — m/ppa)/p +m(ex + pa) /p

and
Ty
(nmy, +mn, —mn/pp,)/p
G, = y v y , 2.98
Y Dy + n/p<2ny - n/ppy) ( )
(e +p)(ny —n/ppy)/p+nley +py)/p
where

Pe = (v = Dlez — (mmg +nng)/p+ (m* +n?) /(20%)pa),
py = (v = Dley — (mmy +nny)/p + (m* +n?)/(20°)p, .
In (2.96), (2.97) and (2.98) the gradients of conservative variables are given by,

U, = (Ui — Uij)/Ax

2.99
U, = (Ui+1,j+1 +U; 1 — Ui jo — Ui+1,j—1)/(4Ay) ( )
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The artificial viscosity coefficient p is determined by (2.67) similarly as that in one-

dimensional case, but the indicator ¢, is replaced by

gbo = maX(d)i) ¢i+1)7
where ¢; is, neglecting subsript j,
> {|Uili1 +UF — 2U¢k’/Uik}
k

€ + zk: {|Uiij - Ui]ill/Uik}

b; = , (2.100)

with the characteristic quantities UF chosen as the conservative variables at node o,

ﬁi = Po;

m; = max(|ml,, po),
n; = maX(’n’onOo)?
Ei = Ep-

(2.101)

A conceptual difference compared with the one-dimensional case is that the smooth-

ing flux is decomposed according to the local wave direction K = (kq, ko),

1 = |ki|p,
2.102
pe = |ka|p, ( )
where the wave direction is approximately deduced from velocity difference between
7 and j,
ki = e,
(du +d1(11v) / “+eo0 (2103)
k? - (du2+dv2)1/2+eo .

Note that the calculation of gradients in the direction normal to the interface
requires two cells, while in the direction along the interface requires three cells; the
stencil is shown in Fig. 2.13a. It is also the stencil for evaluating the flux through
interface AB. After summing the four fluxes, the stencil for volume (i,j) consists

nine nodes, as shown in Fig. 2.13b.

Remark The extension from one-dimensional case to two dimensions follows the
idea that a two-dimensional scheme should calculate a one-dimensional flow field
with any orientation in the same way as the 1-D smoothing scheme do. Following
this idea one should consider the possible modification of the indicator, the predictor

step, and the smoothing term in flux evaluation.
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Figure 2.14. A locally one-dimensional wave lying on a two-dimensional control volume.

Fig. 2.14 shows the sketch of a wave front with direction K and two control
volumes ¢ and j. We are interested in the flux through their shared face, and should
determine the indicator, the predictor step, and the smoothing term locally. First
consider the indicator. It has been shown in previous section that the indicator is
equivalent to the ratio of the second-order derivative term to the first-order one;
thus a 1-D indicator along direction K gives
5 AT

__ |2
*=gam !

where ¢ represents a flow variable, and Az denotes grid size along K. On the
2-D grid the simplest ratio is, along N which connects volume ¢ and j as shown in

Fig. 2.14,
1¢n AZE2
On = |47,
anLI?n

where Az, denotes grid size along IN. Since

6l = K- VE] = [V¢],
€] = IN - V€] = cos(0)[V¢],

then one has
[€0] = cos(0)1&;
similarly
[6nnl = cos”(0) |-

Then
% . 1 A.Ik;

¢, cos() Az,
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It is reasonable to assume that ratio Az /Az, = cos(6), by Fig. 2.14', then we have

e =1 (2.104)
Pn
(2.104) states that an indicator determined along grid direction N is the same as

that along the normal of the wave front K. Therefore it is not essential to trace the

wave direction in determining the indicator at an interface.

In the predictor step, according to the smoothing scheme, the slope of variables
should be multiplied by 1 — 2u, which finally leads to the modification in time step
of the predictor step (2.95).

In multi-dimensional flow, the artificial viscosity coefficient is actually a tensor.
Since it should be as less diffusive as possible, it is set to be zero in directions other
than the normal direction of the wave front. Then the tensor is written, assuming

the normal of the wave front be locally z-axis, as
J
0 0}
It can be easily rotated to the Cartesian coordinates, and become

pr 0
U

where p; and ps are given by (2.102). This decomposition is shown in Fig. 2.15.
Having obtained the artificial coefficient in x and y directions, it is naturally to

design a smoothing flux as that in (2.96). §

Fig. 2.16ab show results of shock diffraction obtained by the present scheme using
the conservative and the primitive variables. The incident shock Mach number M,
is taken as 2. The geometry combines three squares; each of them consists of 32 x 32
cells. It can be seen that the shock thickness is about two cells. Although the head
and tail of the shock may extend further, it shows that the flow monotonely goes

through the shock discontinuity. A vortex and a secondary shock, which are close

IThe assumption seems reasonable only for small angle . However for 8 close to 90°, the
assumption implies Az approaches to zero, which is obviously incorrect. This singularity is
due to difficulties in detecting a wave based on the information only at two nodes which lies on
the same side of a discontinuity. Another more reasonable choice of (2.104) is to replace 1 by
min(v/2,1/cos(#)), which is however less efficient.

48



“wave front

g‘igure 2.15. Decomposition of the artificial viscosity coefficient according to the wave
irection.

to the corner, have been resolved on such a coarse grid. In the uniform region far
behind the incident shock wave, a weak disturbance is observable. This is due to an
initially discontinuous shock approaching to a continuous shock. This phenomenon
can also exist in the results using some other schemes. It should be noted that
although the Euler equations in the form of the conservative or primitive variables
have no difference, the smoothness indicator (2.101) is different because the scalar
variables used are either the conservative or the primitive variables. By comparing
two results shown in Fig. 2.16ab, it is seen that the results are not sensitive to the
variables used in the indicator. This is also ture for the 1-D flow by comparing
Fig. 2.9 and Fig. 2.10.

2.5 Summary

In this chapter the TVD Lax-Wendroftf scheme is reformulated via the smooth-
ing flux. The conventional limiters then correspond to the nonlinear coefficient of
smoothing. In the linear scalar case, two approaches are equivalent. In solving
system of the conservation laws by using scalar limiters, the present approach is
able to be split to two steps. In the first predictor step, local variables at interfaces
are calculated by the Euler equations. Then the fluxes through the interfaces are

determined by the local variables, plus the smoothing flux.

The extension from one-dimensional case to two dimensions follows the idea
that a two-dimensional scheme should calculate a one-dimensional flow field with
any orientation in the same way as the one-dimensional scheme do. It turns out
that the artificial coefficient should be decomposed according to the direction of

wave front. Unlike most schemes that employ the Riemann solver at interfaces, the
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Figure 2.16. A shock wave with My = 2 diffracting over a 90° corner: 32 x 32 x 3 cells,
CFL=0.7, « = 1.2. a. the result obtained by using the conservative variables; b. the
result obtained by using the primitive variables.
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present approach locally solves the exact multi-dimensional Euler equations there,
consequently the Riemann solver is not required. The computational stencil for the
scheme consists of nine nodes with three in each dimension, therefore it is compact.
The scheme is an essentially central difference scheme, and can be as less diffusive as
the first-order upwind scheme around a discontinuty in solving the scalar equation.
The scheme will be formulated for any unstructured grid and applied to a variety of

gas-dynamic problems in Chapter 4.
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Chapter 3

An essentially vectorizable data
structure for some unstructured
grids

3.1 Introduction

3.1.1 Structured and unstructured grids and data structures

A structured grid is one which can be mapped from the physical space to a com-
putational space by one or more subdomains in which it appears as a rectangle. A
structured grid usually allows a two-dimensional (i, j) or three dimensional (i, j, k)
array to be employed for denoting the grid points with suitable definitions of the
computational domain and interfaces between subdomains. Fig. 3.1 shows two ex-
amples of 2-D structured grids made of rectangles and triangulars. A most important
characteristic of a structured grid is that an interior node point on it can uniquely
determine its neighboring node points from its own index. For instance, four closest
neighbors of node (i,j) on the rectangular grid are (4,5 + 1), (4,5 — 1), (i + 1,7)
and (i — 1,7) as shown in Fig. 3.1a, while six closest neighbors of node (¢, j) on the
triangular grid are (¢ — 1,7 — 1), (4,7 — 1), (¢ +1,4), (i,7+ 1), (i — 1,5 + 1) and
(i —1,7) as shown in Fig. 3.1b.

The generation of an initial body-fitted structured grid about arbitrary geome-
tries is a difficult task. The multiblock strategy has been used for complex geometries.

This concept is to divide the complex physical domain into simple subdomains, or
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Figure 3.1. Illustration of structured grids: a. rectangular structured grid; b. triangular
structured grid.

blocks, which can be easily covered by a structured grid. However, grid generation
around complex configurations entails the need for a large number of blocks, and the
problems of defining the blocks and their interfaces become increasing difficult as
the number of blocks increases. To alleviate the difficulties in structured grid gen-
eration, the unstructured grid is generally adopted. A unstructured grid does not
determine the connectivity information from indices, but locally stores it. Actually
a multiblock grid is unstructured between blocks, but provides structured portions
within blocks, it represents a compromise between a globally structured mesh and

a locally defined unstructured mesh.

It should be noted that whether a grid is structured or not sometimes depends on
the way of restoring the adjacency information of the grid, i.e., what data structure
has been used. A structured node point is usually labeled by an index (i, ), and
neighboring nodes are deduced from the index. Although the triangular mesh shown
in Fig. 3.1b is able to be defined as a structured one, most researchers prefer to order

the mesh in an unstructured way.

Two popular methods of restoring unstructured grids are the cell-centered and
the cell-verter approaches. In the cell-centered approach, the unstructured grid is
stored according to its mesh cells, so the variables are stored at the centroids of the
cells, whereas in the cell-vertex approach the grid is stored following grid nodes or
vertices and the variables are stored at the vertices. Both approaches should include

adjacency information, in some way by array
listnbr(i,inbr); inbr =1,2,--- maznbr(i). (3.1)

In the cell-vertex approach ¢ represents the index of a node point or a vertex,

listnbr(i,inbr) stores the indices of its neighboring cells or vertices. maxnbr(i)
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a. b. C.

Figure 3.2. The ratio of the number of cells and vertices for different cells: a. triangular
grid, b. quadrilateral grid, c. hexagonal grid. One new vertex introduces two triangular
cells, or one quadrilateral, but one new hexagonal cell requires the addition of two vertices,
as shown by dashed lines.

saves the number of 7’s neighbors. In the cell-centered approach ¢ will represent the
index of a cell, listnbr(i,inbr) stores the indices of it neighbors, and maxznbr(i) is
a constant, three or four for a uniform triangular or quadrilateral grid respectively.
The issue of cell-vertex vs. cell-centered data structure is still an open one. In 2-D
case, the ratio of the number of cells to the vertices is approximately two for a trian-
gular grid, nearly one for a quadrilateral grid, and half for a hexagonal grid, as shown
in Fig. 3.2. As far as memory requirement is concerned, the cell-vertex structure
is cheaper for the triangular grid, whereas the cell-centered one performs better for
the hexagonal grid. In general, we are inclined to that both data structures require

similar computational effort and memory requirements.

Another promising data structure is edge-based, or face-based in 3-D, which
gathers information from all of neighbors of each edge, operates it on the edge, and
then scatters it back to the neighbors of the edge. The neighbors of each edge are
either two end nodes of the edge [1], or two cells of the edge on either side [2]. The
edge-based structure has several major advantages. First the flux evaluation can
be done by directly using the edge-based structure without any searching and logic.
Another benefit is that the neighboring cells or nodes are of a fixed number, say
2 in two dimensions, which further removes the uncertainty in the data structure.

In principle, an edge-based data structure is able to treat various control volumes
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without difficulty.
3.1.2 Mesh adaptation

Most phenomena in nature are nonlinear systems which often contains many dis-
parate length scales. In simulating them by computer, a numerical method should
be able to adapt resolution to the regions with different length scales, otherwise
computer resources will be largely wasted on regions where solutions do not require
the maximum resolution. Mesh adaptation is just a way to distribute mesh cells in

the interested regions so as to resolve a physical phenomenon economically.

Under the finite volume method, a grid can be adapted to the solution by two
distinct ways h-refinement and r-refinement. R-refinement moves the existing nodes
on a mesh to the regions of importance. In h-refinement or mesh enrichment or mesh
embedding, the cells in the regions of interest are locally subdivided, and some other
cells may be coarsened in the regions of less importance. Both adaptation methods
are effective in providing higher accuracy for a given expenditure of computer time
and memory than is possible with non-adapted methods. However, the accuracy im-
provement possible with r-refinement is limited by the number of nodes in the initial
grid [3]. Several investigators have combined the r-refinement with h-refinement to
compute complex flows. R-refinement is burdened with the difficulty in dealing with
mesh quality issues and low efficiency of the global interpolation from the old to the
new grid!, so that a refinement method containing remeshing is more expensive than
a simple h-refinement. Therefore only A-refinement is considered in this chapter. For
a survey on r-refinement, the reader is referred to the review article by Hawken et
al [4].

Any grid with A-refinement is actually unstructured because of the changing
topology. The h-refinement methods appear in the literature are roughly divided
to two groups, structured and unstructured h-refinement. The structured one keeps
some structure in grid or in data structure, while the unstructured one completely

uses unstructured grid and data structure.

One structured h-refinement is the so-called adaptive mesh refinement (AMR).

In the approach, the refined regions are not an individual cell, but rather large rect-

IThe interpolation may be avoided by taking into account the motion of grid, which is still not
cheap.
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angular regions with hundreds to tens of thousands of structured cells in each block
[5]. As a result of this block-structured approach, it is possible to amortize the
overheads of managing a complex unstructured data structure over a large regular
region, and the calculation on the region can be easily vectorized [6]. A difficulty
behind the AMR method is the use of a regular background mesh composed en-
tirely of structured cells to allow a description of arbitrarily complex boundaries.
On the other hand, much of the complexity of this method is concerned with the
management of irregular data structures describing the placement of the finer grids
within the coarser grids and the determination of the optimum placement of the
finer grids. A serial implementation of the AMR algorithm for gas dynamics may

comprise lengthy lines, sometimes over 27,000 exclusive of support libraries [6].

Another structured h-refinement is the adaptive Cartesian method [1], [7], [8],
[9], [10]. In this method, the refined regions can be an individual cell, and the grid is
represented on the Cartesian grid. The mesh generation is simply to cut the bodies
in the flow out of a Cartesian grid, although boundary conditions for cut cells have
to be carefully treated. Advantages of using Cartesian meshes for the Euler solvers,
besides increased ease of mesh generation, include simpler flux formulations and
fortuitous cancellation of truncation errors not occurring on less regular meshes.
In addition, Cartesian mesh generation can be component-based [11]. However,
the adaptive Cartesian method has two drawbacks as pointed out by Coirier and
Powell [12]. First, viscous flux functions rely heavily upon grid smoothness and
orthogonality to obtain accuracy and positivity. The non-smoothness of the cut
cells has negative implications for the smoothness of aerodynamics parameters that
rely on derivative quantities at walls, such as skin friction and heat transfer, and
can also have a detrimental effect on convergence. Second, the isotropic Cartesian
mesh fails to adapt mesh cells to anisotropic viscous phenomena at high Reynolds
numbers, such as the boundary layer. Stretched cells are needed for the economic

resolution of these flow phenomena.

3.1.3 Vector and parallel processing

A vector is a series of values, such as an array, on which instructions operate. When
arithmetic, logical, or memory operations are applied to vectors, it is referred to

as vector processing. Vector processing is made possible by the hardware feature,
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among others, pipelining. Pipelining within the functional unit for an operation
allows each step of the operation to pass its result to the next step after only one
clock period on the Cray C90.

Parallel processing on the Cray C90 is achieved through splitting of loops contain-
ing no data dependencies among the processors of the architecture. Each processor
receives vectors of smaller length which are then concurrently processed in standard
vectorized mode. This distribution of workload is done dynamically at runtime.
The Cray C90 is a shared memory multiple instruction multiple data (MIMD) ar-
chitecture consisting of a few high performance vector processors sharing a common,
global memory. All data is held within the shared memory effectively eliminating

any kind of communication among the processors.

The vectorization of the steady flow solver on an unstructured grid has reached
a mature state. It is accomplished by either sorting or coloring the elements into
groups, so that within each group, no element accesses the same node. However the
efficiency of vector processing of both sorting and coloring procedures is not clear.
If an unstructured grid works without mesh adaptation, sorting and coloring are
just conducted once before the computation of the flow solver. In this case, the
issue of their efficiency is trivial. One may design a time-consuming sorting method
to optimize any unstructured data structure for an object machine. However it is
totally different for a grid with local mesh adaptation. The local adaptation changes
the topology of the unstructured grid. The data structure after adaptation may
completely change the order which is provided by sorting and coloring procedures.

Consequently sorting and coloring have to be conducted with every mesh adaptation.

On the other hand, local mesh adaptation is associated with extremely compli-
cated logic. The logic often contains data dependency which inhibits vectorization,
so that the overheads of mesh adaptation becomes very large when the flow solver
is well performed by vector and parallel processing. On the Cray C90, a non-
vectorized mesh adaptation procedure may require the computer time 10 times as
the flow solver in single processor mode, and around 50 times using eight processors
[13]. In computation of steady flows, the low efficiency of mesh adaptation is some-
what tolerable because few adaptations are sufficient. But mesh adaptation has to

be frequently performed in unsteady computations, so that one might even question
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that whether we can really gain efficiency from such expensive mesh adaptation

compared with a uniform grid.

Therefore, for general-purposed applications, one should propose a data structure
for unstructured grids, which must make both the flow solver and mesh adaptation

vectorizable.

3.1.4 The essentially vectorizable data structure

An essentially vectorizable data structure is a data structure under which

e a flow solver should be able to perform local and global operations by vector

processing;

e mesh adaptation should be able to be performed by vector processing.

If a data structure satisfies the first condition, it is vectorizable; if it further satisfies
the other condition, it is essentially vectorizable. The flow solver coupled with
mesh adaptation under the essentially vectorizable data structure is able to compute

unsteady and steady flows with very low overheads.

In this chapter, a class of the essentially vectorizable data structure is proposed.
A flow solver under this novel data structure is able to locally obtain necessary
connectivity information without any logic, and globally scan all elements without
nested loops. Its high efficiency is shown by applying it to calculate 2-D compressible

flows with shock waves in Chapter 4.
3.2 The cell-face data structure

An efficient data structure often depends on the numerical method which is chosen
in the flow solver. For instance, a data structure is easily made cheaper in memory
by just storing what is required by the solver. In this thesis, discussions are mostly
focused on the finite volume method. The method computes the change of the
conservative values of all control volumes by integrating their interface fluxes, which

consists of two steps:

1. calculating fluxes at every interface,
2. gathering interface fluxes for every control volume.
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One may write the first step in a pseudo-code format,

DO all faces
<+ flux evaluation (3.2)
END DO,

and the second step
DO all control volumes
- suming fluxes of faces (3.3)
END DO.

The operation on the DO loops scans all faces and control volumes of a grid, it is
a global operation; while the operation inside the loops locally handles flux evalua-
tion and summing fluxes. This section is devoted to a novel data structure which
efficiently optimizes the global and local operations, thus greatly decreases the over-

heads of handling some unstructured grids.

3.2.1 Optimization of global operations

An intuitive data structure to underlie the two steps is using two lists of control
volumes and faces with a bi-directional reference,

control volume <= face.
There are no reconcurrence appearing in the bi-directional reference, so that it

naturally avoids sorting or coloring.

In vector processing, the number of loop iterations is preferably integer times as
much as the machine vector length, say 128 for Cray C90. Let’s consider the second

step which sums the fluxes of a control volume,

DO all control volumes
DO all faces
- suming fluxes of faces (3.4)
END DO
END DO.

Some data structures may completely adopt the nested loop (3.4), by inserting the
first step (3.2) into the innermost loop [14]. The innermost loop is as long as the
number of faces of a control volume. The numbers of faces of practical control
volumes are much less than the machine length, say 128, so that (3.4) is poorly
vectorizable. The easiest way to improve vectorization in this case is to remove the

innermost loop by writing the iterations explicitly, or inline expansion. However
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not all unstructured data structure can be expanded. Fig. 3.4a shows an arbitrarily
quadrilateral grid. The nodes have changing numbers of their neighboring nodes, say
from 2 to 5 in the figure. It is actually true for any arbitrarily unstructured grid that
nodes have changing numbers of neighboring nodes. A cell-vertex data structure
defines control volumes according to nodes, then control volumes will consists of
changing numbers of faces. In this case the innermost loop cannot be expanded due
to the unfixed number of faces. On the other hand, in a cell-centered data structure
control volumes are often taken as mesh cells. If an unstructured grid is made of the
same shaped cell, the face numbers of all cells are constant, 3 for triangular, 4 for
quadrilateral and tetrahedron and 6 for hexahedron. The unstructured grid Fig. 3.4a
is equivalent to a description of mesh cells with four faces as shown in Fig. 3.4b. For
any constant number of faces, the innermost loop is replaced by directly summing

the fluxes, for quadrilateral cells,

DO all control volumes

e f=ht et s+ fa (3.5)
END DO.

Then the length of the loop to be vectorized becomes the total number of control
volumes, which is usually much larger than any machine vector length. As far as the
efficiency of vector processing is concerned, a control volume is preferably of constant
number of faces. This is a topological advantage of the cell-centered structure to
avoid the short innermost loop. The data structure using the bi-directional reference

between control volumes and faces is then called a cell-face one.

In addition, the logic associated with local mesh adaptation is simper under the
cell-face structure than the cell-vertex one. Fig. 3.3 illustrates adapting a quadri-
lateral cell. The mesh adaptation is realized by dividing or merging cells, then the
operations handling the adaptation is able to be conducted on a single cell with-
out influencing other cells, but always interacting with a few vertices. Under the
cell-face data structure, the communication between cells are through their com-
mon face. The logic associated with adaptation on a cell face, such as whether split
the face or not, is rather simple as one face has only two neighbors. It is not so
for the cell-vertex structure. The logic of adaptation based on cell vertices are so

complicated that it is extremely difficult to be vectorized.

The cell-face data structure not only takes the advantage of vector processing, but
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Figure 3.3. Illustration of local mesh adaptation of a cell. The adaptation is always
dividing a cell or merging a few subcells, then a cell-centered data structure is preferred.

also is able to be implemented without user intervention on a shared-memory parallel
machine. Both two steps (3.2) and (3.5) are long loops, a compiler may equally
distribute the iterations to available processors without difficulty. This alleviate us
from considering the machine dependent issues such as partitioning of the grid, or

generating local data structures for each processor [13], [15].

3.2.2 Optimization of local operations

In the previous subsection, it has been shown that the cell-face data structure is
efficient in handling global operations. However there are some uncertainties in
local operation under the data structure. First, the direction of the flux through a
face is uncertain since the outward normal are opposite for two neighboring cells of

the face. Practically, the residual of fluxes in (3.5),

f=h+fet+ fs+ fa (3.6)

is not applicable for all control volumes due to this uncertainty. Second, if a face
simply stores two neighboring cells, either cell cannot directly refer to each another.
These two uncertainties of course can be removed in some way by introducing ad-
ditional logic to it, however the additional logic contributes no improvement to a
solution but increases the overheads of the cell-face data structure. This subsection
shows a novel ordering method to remove these uncertainties without any additional
overheads for unstructured quadrilaterals, tetrahedra and hexahedra. For simplicity

only an unstructured mesh of the same shaped cells is analyzed.

Let’s first revisit the famous Konigsberg bridge problem on graph: when can
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Figure 3.4. Tllustration of generating a cell-face data structure for a quadrilateral grid:
a. an arbitrarily unstructured quadrilateral grid; b. roads inside all quadrilateral cells; c.
roads outside of the grid and a path to trace all cells shown by arrows; d. a definition of
face directions according to the road direction.

one trace out a graph without travelling over any road twice (see [16])7 The answer
depends the number of intersection points such that the numbers of roads emanating
from the intersection points are odd. If this number is greater than 2, the graph
cannot be traced. If the number is 2, it can be traced, but only by starting at one
of these, and ending at the other. If the number is 0, one can start anywhere, and
will end at where one starts. To see that one can do it under these conditions, one
way is to make any trip, starting at an odd vertex if there are two such, continuing
until you get stuck. Then make another trip, but adding a side trip along untraveled
roads, until you get back to the old route at the same point. Each trip becomes

longer, until the whole is traced.

On an unstructured grid one may construct roads from any interior point of a
cell to the cell faces, the point is then an intersection of roads. The number of
roads that emanate from the point is equal to the face numbers. The dashed lines
in Fig. 3.4b shows roads on a quadrilateral grid. If an unstructured mesh consists

of the same shaped cell with even faces 2F, the number of boundary faces is even?.

2We show here that if an unstructured mesh consists of the same shaped cell with even faces
2F, the number of boundary faces is even. Suppose a mesh has N total cells and [ interior faces,
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One may further join every two boundary faces and construct roads outside. All
inside and outside roads constitute a graph, and the number of interaction points
is the same as the total cell number. Clearly the number of roads emanating from
the intersection points equals to the number of cell faces, then if every cell is of
even numbers of faces, the graph is able to be traced without travelling over any road

twice. Fig. 3.4c shows one path to trace the quadrilateral grid.

Theorem 1. If an unstructured mesh consists of the same shaped cells with
even faces 2F', the residual of outward fluxes of all cells can follow a definite way,

such as
f=h+fot+fr)— (fra+ fre+ -+ for).

Proof: One is just required to find a definite way for all cells to calculate the
residual of outward fluxes. Since every cell is of even faces, there exists a path to
trace all roads without any repeat. Without losing generality let the direction of the
roads be along the path. When a road passes through a face, as shown in Fig. 3.5a,
it must travel two cells. Then one may label the cell which it travels first right cell,
the another left cell, and define the outward direction of any face by the left cell for
flux evaluation. Because all roads are traced once, any cell must have outgoing roads
and incoming roads of equal numbers F. One may label the faces which outgoing

roads travel from 1 to F', others from F'+ 1 to 2F’, then total outward flux becomes

f=U+fot -+ fr) = (fra+ friat-+ for).

Fig. 3.5b shows an example of face labels for a hexagonal cell. This completes the

proof of Theorem 1.

It should be noticed that once the sum of fluxes of cells follows the definite way,
a cell can directly refer to its neighboring cells through their shared faces in the

definite way. For example following the definition as shown in Fig. 3.5, the outside

and every cell has 2F faces. Since an interior face has two neighboring cells, it is countered twice.
Then the boundary faces equals to

2F x N —2x [ =2(FN —I),

which is always even.
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Left cell Right cell

a. b.

Figure 3.5. Ordering adjacent connectivity by the direction of the road: a. labeling two
neighboring cells of a face left cell and right cell; b. numbering all faces of a cell.

Figure 3.6. Possible order of three dimensional cells: a. for a tetrahedron; b. for a
hexahedron.
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neighboring cells of the cell in Fig. 3.5b are the right of faces 1, 2 and 3, and the
left of faces 4,5 and 6.

In brief, by storing neighboring information with the order following a path which
traces the whole graph of an unstructured grid, the uncertainties in local operation
under the data structure are removed for any cells with an even number of faces.
The conclusion is also valid for three dimensional cells. Examples of numbering

tetrahedral and hexahedral cells are shown in Fig. 3.6.

In some numerical schemes which solve the conservation laws, a geometrical
order of neighboring cells is required. For instance, applying Green’s theorem in
two dimensions to evaluate an averaged gradient of a control volume, one should
then integrate along the boundary contour of the control volume. Fig. 3.7a shows
a contour by the dashed line. Clearly, the integration procedure will greatly benefit
from the geometrical order of boundary points, say anticlockwise ABCD- ... This
requires a cell should preferably store its faces in the same order. On the other
hand, in three dimensions the integration would be performed over the boundary
surface. One portion of the surface is shown in Fig. 3.7b for a hexahedral cell. The
hexahedral cell ought to store its faces in such a way that there is no ambiguity
of which three of the six outside neighboring cells that form a valid portion of the
boundary surface. However these geometrical orders are usually not consistent with
the order which is defined following a path tracing all roads. The following part
of this section will show that it is possible to construct a cell-face data structure
which not only stores faces according the direction of roads but also preserves the

necessary geometrical order for both quadrilateral and hexahedral grids.

First consider the quadrilateral grid. For convenience the direction of the roads
is represented by the direction of cell faces, following that the face is pointing from
road’s left to road’s right. The complicated road graph on Fig. 3.4c thus becomes
Fig. 3.4d. Let’s further impose that the roads inside a cell connects opposite faces
only, then the fluxes of opposite faces must have opposite signs. Now the four faces
of a quadrilateral can be numbered as that follows. One may first label a face with
the positive sign 1, other faces are consecutively labeled anticlockwise, so that the

residual of fluxes is

f=+fiofa— fzofu,
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where the signs of f; and f; are unknown. Since the signs of f; and f; are opposite,

there are two possible cases, either

f=+h+f—fs—fa

or
f=+h—fo—f3+ fa

In the first case one may change the label of face 1 to be 4, and number again other

three faces anticlockwise, then

f=th+thH—-fo—fa=+fi—fa— s+ fa,

which is the same as the second case. Fig. 3.8 describes the consecutive labels
of four faces which is also geometrically anticlockwise. Therefore, there exists an
anticlockwise sequence of four faces of any cell on an unstructured quadrilateral grid
such that the residual of fluzes follows

f=h—-f—fatfo (3.7)

For the hexahedral grid, one may impose that the roads inside a cell should
connect opposite faces only, then three outgoing roads always constitute a local
system of “coordinates”. Define three coordinates x, y and z according to the right-
hand rule, which is not necessary to be the Cartesian coordinates. Label the faces
which coordinates x, y and z go through 1, 2 and 6 respectively, then number their
opposite surfaces 3, 4 and 5 in the same order. It is seen that once the system of
“coordinates” is found, the labeling method is unique. The geometrical relation of
neighboring cells is easily deduced from the unique labeling method, and the residual

of fluxes follows
f=-h—-h+hth+fs—1T.
3.3 Mesh adaptation under the cell-face data structure

In the previous section, it has been derived that a class of cell-face structure with
strict definitions in summing fluxes and numbering faces. Under the data structure

for quadrilateral and hexahedral grids, a flow solver may globally scan all control
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Figure 3.7. Tllustration of orders of geometry required by some numerical methods: a.
contour integral along outside neighboring cells, the order of these cells is useful; b. surface
integral over a surface consisting of six neighboring cells, the information of which three
cells that form a valid triangular surface is useful.

a. b.

Figure 3.8. The order of face for quadrilaterals
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volumes without nested loops, and locally obtain adjacent connectivity without any
uncertainty. In this section we are going to show that the cell-face structure also

permit vectorizable local mesh adaptation.

In local mesh adaptation, one or a few hanging nodes will appear on the face
between two cells with different levels of refinement. Fig. 3.9 illustrates two handing
nodes on quadrilateral and triangular grids. Treating the hanging nodes has to take
into account the states of all neighboring cells of cell 7, and furthermore treating the
hanging node would possibly introduce some new hanging nodes. The procedure
is so logically complicated that it is poorly vectorizable if not impossible. To be
able to easily vectorize the adaptation procedure, it is decided in the early stage of
the development of the present data structure that any treatment for the hanging
nodes is not considered. On the cell-vertex data structure a hanging node represents
a control volume, then carefully treating the node becomes essential for the flow
solver. However a hanging node under the cell-centered data structure just implies
that a few shorter faces replace their combined one. It does not change the control
volume itself, so that whether treating the hanging nodes becomes trivial under the

cell-centered data structure for the flow solver.

To preserve conservation the flux through a split face is equal to the sum of its

subfaces’ fluxes with the same sign. In Fig. 3.9a, the flux through AB equals to

fag = fan + fus.

Obviously it had better make the subfaces have the same direction as the original
face so as to not have to consider the sign of fluxes. Fig. 3.10b demonstrates a
direction definition of possible adaptation for the cell shown in Fig. 3.10a. It is
straightforward to define the direction of internal faces, if two opposite faces are split
equally. Fig. 3.12 illustrates a few possible adaptation strategies with their direction
definitions. The adaptation for a hexahedral cell is similarly defined, an example is
shown Fig. 3.11. The proposed adaptation strategies preserve the property that the
residual of fluxes may follow a definite way no matter whether the faces are split or

not.

It should be noticed that the mesh adaptation consists completely of local op-

erations, such as defining directions of subfaces and locations of subcells. The op-
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Figure 3.9. Illustration of hanging nodes: a. hanging node H on an adaptive quadrilateral
grid; b. hanging node H on an adaptive tria,ngu%ar grid. Dashed lines indicate possible
connections to remove the hanging nodes. The present cell-face data structure will leave
the hanging nodes intact.

B
D
C
> A
a. b.

Figure 3.10. Illustration of the direction of the outside subfaces: a. face directions of
a cell; b. directions of the outside subfaces. The directions of subfaces are the same as
these of their unsplit faces.

erations are able to be determined from the original cell and its four faces. This
procedure can be conducted by vector processing without difficulty. The data struc-

ture is thus essentially vectorizable.

3.4 Summary

A class of essentially vectorizable data structure for any unstructured quadrilat-
eral and hexahedral grids is proposed in this chapter. The data structure is a
bi-directional reference between cell and face with a strict ordering method. A flow

solver using the finite volume method under the data structure is able to

1. perform local and global operations by vector processing;
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Figure 3.11. A vectorizable adaptation strategy for a hexahedral cell

Figure 3.12. Illustration of four possible adaptation strategies under the cell-face data
structure.
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2. locally obtain necessary connectivity information without any logic;

3. globally scan all cells or control volumes without nested loops.

It is clear that the data structure with these properties is efficient not only on super-
computers but also on other platforms, such as personal computers. In addition the
data structure may perform local mesh adaptation by vector processing. The data
structure considerably decreases the overheads of handling unstructured grids and
adapting grids, and thus it is high efficient for most applications besides unsteady

and steady compressible flows with shock waves.
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Chapter 4

Two-dimensional vectorizable
adaptive solver (VAS2D)

4.1 Introduction

The unstructured meshes are usually made of triangles and quadrilaterals. Extensive
studies have been conducted on unstructured meshes of triangles for either the finite
volume method or finite element analysis (see Venkatakrishnan’s review [1]). Since
a triangular mesh has the number of edges roughly 50% over the quadrilateral coun-
terpart, it is clear that the triangular mesh consumes more storage and more flux
evaluations than the quadrilateral one. However it is not yet established whether
the additional edges of the triangular mesh yields higher accuracy. Aftosmis et al [2]
compared a variety of reconstruction schemes on both meshes, and concluded that
on regular and stretched meshes the additional edges do not lead to any apparent
accuracy advantage. The conclusion supports the method that removes unnecessary
edges from boundary layer regions. The method makes use of a structured quadri-
lateral mesh in the near-wall regions and other regular portions of an unstructured
triangular mesh (for example, [3]). If these structured quadrilaterals are unavoid-
able in the boundary layer, and quadrilaterals are more cheap and efficient without
losing accuracy, a natural idea is that one may completely make use of unstructured
quadrilateral meshes but generate a layer of quadrilateral mesh which is orthogonal
to the wall surface in mesh generation procedure. Repeated adaptation on the layer

of quadrilateral mesh automatically generates a structure-like mesh around the wall
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surface. This idea finally leads to the work in this chapter. It should also be noted
that the effort involved in generating a quadrilateral mesh of a certain fineness is
much less than the effort required in generating triangles of similar fineness [4]. In
addition, Chapter 3 has shown that the essentially vectorizable data structure exists
for quadrilaterals but not for triangles. The data structure will greatly simplify the

complicated logic especially in the adaptation procedure.

In this chapter, a two-dimensional unstructured vectorizable adaptive solver
(VAS2D) is developed on quadrilateral grids. This general-purpose solver is able
to simulate unsteady/steady, inviscid/viscid compressible flows. The VAS2D con-
sists of three parts, pre- and post-processing, flow solver, and adaptation procedure.

All parts are equally important, and demand considerable skills and resources.

The organization of these parts is shown in Fig. 4.1. In the pre-processing, a
quadrilateral mesh generator (QuadMesh) is proposed for automatically generat-
ing quadrilateral grids for arbitrary geometry. In the flow solver the finite volume
method is used to treat complicated shapes of control volumes. The novel central dif-
ference scheme with smoothing or artificial viscosity (see Chapter 2) is adopted. The
fluxes through interface are determined by locally solving the two-dimensional Lax-
Friedrichs scheme; neither the Riemann solver nor one-dimensional decomposition
is required. The artificial coefficient of smoothing is controlled so that the scheme
holds monotonicity property or satisfies the total variation diminishing (TVD) con-
dition at least for the scalar case. The adaptation procedure refines flow regions
with large truncation errors, and coarsens regions with small truncation errors. The
truncation errors are measured by an error detector or sensor, which employs the
ratio of the second derivative term to the first one of the Taylor series expansion of
density. It turns out that the flow solver with the error sensor is nearly indepen-
dent of flow conditions for a wide range of the Mach number. The cell-edge data
structure discussed in Chapter 3 is applied to the flow solver and the adaptation
procedure. Post-processing transforms data on the cell-edge data structure to the
conventional vertex-centered or cell-centered structure, then flow visualization and
data processing can be realized by using commercial softwares. The VAS2D provides

a few subroutines to draw iso-contours of flow variables in PostScript format.

The chapter is organized as follows:

77



Mesh Generation

Y
»‘ Initial Adaptation }47

i

Flow Solver

Y
=~ Mesh Adaptation

Post-processing

Figure 4.1. The overview of the algorithm VAS2D

Section 4.2 gives a brief description of the automated mesh generation algo-
rithm. A few mesh examples are shown. Some numerical results calculated on

these meshes are demonstrated in Section 4.7;

Section 4.3 introduces the cell-edge structure which is employed in the VAS2D.
The data structure is used by both the adaptation procedure and the flow
solver. Detailed implementation of the structure on the adaptation procedure

is discussed in Section 4.4, and on the flow solver in Section 4.5.6;

Section 4.4 is devoted to the adaptation procedure, including criteria for adap-
tation, strategy for adaptation, conservative variables at new cells, and finally

efficiency of vector processing of the adaptation procedure;

Section 4.5 presents the flow solver on quadrilateral grids. Although the meth-
ods in this section are described for cell-centered quadrilaterals, they can be

applied to arbitrarily shaped control volumes without difficulty;

Section 4.6 measures practical efficiency of vector and parallel processing of the
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VAS2D. A quantitative comparison of the adaptation method and the uniform
Cartesian grid is also shown. The comparison shows the VAS2D performs
better than the uniform Cartesian grid by only two levels of refinement in

both computer time and memory requirement;

e Section 4.7 contains a variety of numerical results obtained by the VAS2D.
The results include shock diffraction, steady supersonic tunnel flows, unsteady
shock / circular-cylinder interaction, shock / square-cylinder interaction, shock

/ boundary layer interaction, and shock moving in a nozzle.

4.2 Automated quadrilateral mesh generation

A locally adaptive mesh algorithm requires an initial background grid on which
the adaptation can be conducted. Although there are some available algorithms to
generate the grid, data structures in these algorithms are quite different from that
used in the VAS2D. Furthermore, it is decided early in the development of the present
method that a mesh should be suitable not only for inviscid flows but also for viscous
ones, that is, high quality meshes may be automatically created in the boundary
layer when the mesh is adapted by the VAS2D. This imposes more restrictions on
the mesh generation procedure. In this section an algorithm is proposed to generate
quadrilateral meshes for arbitrary geometry to complement the VAS2D solver. The
technique used is similar to the advancing front method which is widely applied in
triangular and quadrilateral mesh generation [5], [6], [7], [8]. Special attention is

paid to generate high quality boundary cells.

4.2.1 Outline of the mesh generation algorithm

The automated quadrilateral mesh generation algorithm (QuadMesh) is programmed
interactively for personal computers, since extensive computation is not necessary
in 2-D mesh generation and personal computers often have a more flexible graphical

interface than supercomputers.

An outline of the QuadMesh is summarized in Fig. 4.2. Any 2-D geometry can
be described by any combination of line segments and/or arcs to some accuracy.
Users are just required to input the data of these segments and arcs in a data file.

The algorithm reads the data from the file, then it generates meshes automatically.
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Figure 4.2. The overview of the quadrilateral mesh generation algorithm (QuadMesh)

In initialization, the QuadMesh creates one initial boundary front for a simply
connected domain, and a few boundary fronts for a multiply-connected domain. In
the code, every node on front(s) is linked by storing indices of its left and right
neighboring nodes; a front thus becomes a chain of nodes. The QuadMesh then
generates new mesh cells for the extremely sharp concave corners ( < 30° ) if they
exist. These sharp corners may cause some logic difficulties in generating interior

nodes, such as new nodes are generated outside the domains.

After start advancing the boundary front(s), the QuadMesh first generates mesh
cells along the boundary of the geometry. This layer of boundary mesh is well
controlled so that it can be orthogonal or nearly orthogonal to the given geometry
after optimization. The accuracy of a flow solver is enhanced by the adaptively
refined meshes based on the orthogonal mesh. Most applications may benefit from
this treatment because the accuracy at the boundary is of great value especially in
viscous flows. After the boundary mesh cells are generated, the QuadMesh generates

interior mesh cells by repeatedly advancing the updated front.

During advancing the front(s), new mesh cells are created on the front at sharp
corners ( < 120° ). If there are no sharp corners, a new cell is generated in a smooth

region on the front. The new cell introduces new sharp corners. Then the procedure
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a. b.

Figure 4.3. Illustration of joining-front a. Joining a multiply connected front; b. Joining
a simply connected front. A new cell is created between front(s); the new cell changes the
connectivity of front.

above is repeated until the mesh cells cover the whole domain of the given geometry.
If some nodes on the front(s) are very close together in space, but not close in the
chain of front nodes, they are joined together by creating a new mesh cell there.
This joining-front procedure is illustrated in Fig. 4.3. Joining-front is unavoidable
for a multiply connected domain, and it also possibly appears in the narrow region
of a simply connected domain. Note that after joining a front, a simply connected
domain becomes a multiply connected one, while a multiply connected domain may

become simply connected.

In the advancing front procedure the quality of mesh is not taken into account, so
the generated mesh should be optimized. Two optimization methods are used, one
is to optimize the number of neighbors of the interior nodes, and another optimizes
the nodes’ locations by some elliptic iterations. By noticing that an interior node on
any structured grid has four neighbors, the number of neighbors is optimized close
to four wherever possible. For example, a node which has only two neighbors are
removed; Kinney [9] summarized many other cases which are able to be improved.
In the iterations, locations of the nodes that are close to a boundary are adjusted
to be orthogonal to the boundary, and the nodes inside are averaged by their neigh-
boring nodes. A few iterations (less than ten) are practically sufficient to obtain an

acceptable mesh.

The generated mesh is further transformed to the data under the cell-edge data
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Figurf\i 4.4. Unstructured quadrilateral mesh generated by the QuadMesh: a 30° wedge,
640 cells

structure (see Section 4.3), by following the method describe in Chapter 3. The
output of the QuadMesh is a direct input for the VAS2D flow solver.

4.2.2 Grid examples

Some representative meshes are demonstrated in this subsection. All meshes are
automatically generated by the QuadMesh. Fig. 4.4 shows the mesh of a 30° wedge.
The cells are truly unstructured although a structured mesh can be obtained in this
simple geometry. The interior cells near the 30° corner are specially generated in
the initialization procedure. Fig. 4.5 is a mesh for simulating flow over a circular-
cylinder. Note that the mesh cells close to the half circle are nearly perpendicular to
the boundary surface. The computational domain for simulating flow in a nozzle is
shown in Fig. 4.6. Fig. 4.7 shows the mesh generated for a multi-body geometry, in
which a square-cylinder lies in a long tube. In four meshes, the QuadMesh generates
high-quality regular mesh cells in large portions of the computational domains. More
complicated geometry will be a combination of these simple geometry, and will not

be shown here.
4.3 Data structure

A fundamental nature of the data structure is that every cell points to its four edges,
and every edge points to its two neighboring cells. The basic information saved for a
cell is its location and the indices of four edges. The four edges are uniquely ordered.
In Fig. 4.8a, edge BC, CD, DA, AB are neighboring edges NE1, NE2, NE3, NE4

respectively. Every edge is defined as a directional segment as shown in Fig. 4.8b.
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Figure 4.5. Unstructured quadrilateral mesh generated by the QuadMesh: a half-circle,
2112 cells

Figure 4.6. Unstructured quadrilateral mesh generated by the QuadMesh: a nozzle, 2169
cells

Figure 4.7. Unstructured quadrilateral mesh generated by the QuadMesh: an oblique
square in a tube, 3316 cells

a. b.

Figure 4.8. Cell-edge data structure: a. Cell information, a cell points to four edges; b.
Edge information, an edge points to two neighboring cells.
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The direction assures that the left of NE1, NE4 and the right of NE2, NE3 are
the cell itself, while the right of NE1, NE4 and the left of NE2, NE3 corresponds
to the right, below, above and left neighboring cells, respectively. In the cell, the
conservative and primitive variables are located at the centroid of the quadrilateral.
The centroid is often referred to as the center of mass. The locations of the centroid
rg of a quadrilateral are exactly obtained by dividing it into two triangles, say
AABC and AACD in Fig. 4.8a. Denoting the centroids of two triangles rgq, rgo,

and volumes 57, Sy respectively, one has

rg1S1 +raSs
rqg = .

S1+ Sy

The centroid of a triangle is the algebraic average of the locations of three vertices,
say triangle AABC,

rg, = §<rA +rp+reo).
The volume or area of a triangle is given by, say triangle AABC,

1
S = ErAB X TAC-

The basic information saved for an edge is the locations of its two ends and the
indices of its left and right cells. A cell never directly points another cell but through
their common edge. For instance, if cell ¢ need the information of right cell j, then
it should get the right index of its NE1 as shown in Fig. 4.8b. It is clear that one
adjacent connectivity only needs two memory reads during computation, because of

the unique definition of geometry.

The strict neighboring definition in the data structure reduces the complexity
of logic in the unstructured adaptive solver without losing generality. It has been
proven (see Chapter 3) that the definition exists for any mesh which consists of
arbitrary quadrilaterals. We remarks that the data structure does not require much
more memory compared with an unstructured data structure, it just stores the

necessary topological information in the proper order.

Another advantage of the data structure which is better than other locally adap-
tive unstructured ones is that it can be naturally vectorized. It is generally known

that data dependency prevents vectorization. Because a cell never directly points
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to another cell but through their common edge, then an operation on a cell can be
organized to be independent of other cells. This property simplifies the vectorization
not only in solving conservation laws but also in refining and coarsening grids. Un-
der the architecture of Cray C90, it turns out that the data structure even allows
parallel execution on multiple CPUs by autotasking ! without any user intervention.

The efficiency of vector and parallel processing will be discussed in Section 4.6.

4.4 Adaptation procedure
4.4.1 Criteria for adaptation

There are two main reasons for using an adaptive mesh instead of uniformly refined
one. First, physical phenomena have disparate length scales. The grid should be
allowed to adapt to the solution to ensure that the regions with short length scales
are not under-resolved and that the regions with long length scales are not over-
resolved. Second, there are also abundant phenomena in the domain only some
regions of which we are interested. Then the regions need to be studied at high
resolution. For instance, in simulating flows past a blunt body, the vortex shedding
in the wake behind the body may extend very far. Although main vortices in the long
wake have the similar scales and should be resolved by similarly refined grids, it is
much more economical just to refine the vortex shedding close to the body where we
are interested. Another important example is geometry-based mesh refinement [11],
in which meshes are adapted according to curvature of boundaries of computation
domain. The geometry-based refinement mainly objects to improve resolution of
complicated geometries. Note that the second reason for mesh adaptation is either
problem-dependent or can be realized in mesh generation procedure, therefore only
the adaptation criteria based on physical phenomena are discussed in this section.
Theoretically, an attractive criterion is that of equidistributing the numerical
error?. In other words, fine cells should be distributed in any region where the
error is large. In practice, such a concept only seems to work well in idealized,

academic examples. There is substantial difficulty in defining appropriate measures

L Autotasking can be generally described as the automatic distribution of loop iterations to
multiple processors, so the iterations can run on multiple processors concurrently, and it makes
program run faster (wall-clock time) than it does without autotasking. (see [10])

2 Another methodology emphasizes that all adaptive processes aim at a specified accuracy solu-
tion, then the adaptation criterion would be different (See [12]).
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Figure 4.9. Sketch of an interface: interface AB and its two neighboring cells 7 and 7;
¢t — 1 and j + 1 are ghost cells.

of error, and in evaluating them numerically. To deal with this problem, heuristic
measures are needed. Roe reviewed these measures in [13], and Zeeuw [14] compared

characteristics of a few measures in steady flow calculations.

The current criterion for adaptation is based on the truncation error of the Taylor

series expansion of density. The criterion is, for cell ¢
Re fine = Maximum et in four neighboring edges > ¢,,

Coarse = Maximum et in four neighboring edges < ¢.,

where Refine and Coarse are logical flags which indicate whether the cell needs to
be refined or coarsened. ¢, and ¢, are threshold values for refinement and coarsening.
The truncation error indicator e is given by the ratio of the second-order derivative

term to the first-order one in Taylor expansion, so that

e = Max(\Vt)e = Vi)l |(Vio)e — (Vip)il |
Oéfpc/dl + |(le)l’ ’ afpc/dl + |(vl,0)j’

where V; denotes the gradient along direction [ as shown in Fig. 4.9. The locations

(4.1)

of density appeared in (4.1) are shown in Fig. 4.9. The logic in (4.1) chooses the
larger one in two ratios of the second-order term to the first-order one at nodes i
and j along direction [. There are three parameters in the criterion. ay is initially
designed to prevent a zero denominator, and it can also filter extremely small flow
variations. For example, if the amplitude of the variations in some regions is much
less than ayp., then the truncation error indicators are also small. Consequently
cells will not be refined there. The subscript f therefore denotes “filter”. p,./dl

which follows ay is used to make the indicator dimensionless. Three parameters are

86



slightly problem-dependent to achieve the most economical adaptation. If without

description, €, = 0.08, e, = 0.05 and ay = 0.03 are chosen throughout the thesis.

Remark Consider the ratio of the second order term to the first order one in the

Taylor series of function &, at node 1,

|1/2§"A$2’ _ i + &1 — 26
{'Ax &1 — &ia
Denote V¢; = %, V. = %, the relation above becomes
’vfc — v£z|

V&
To avoid division by zero, adding a small value on the denominator, one has

|v§c - v§z|
af&/Am + |V§Z| .

(4.2)

The ratio in the form of (4.2) is just that appears in (4.1). The flow solver that will
be discussed in the following sections also uses this unstructured form to calculate

the smoothness indicator. q

Remark  The error detector in the present criterion compares the ratios of
the second derivative term to the first one in four directions around one cell, it
is powerful in detecting all important physical phenomena in compressible flows,
such as shock wave, contact surface and vortex. Numerically it seems somewhat
expensive. However it will be shown that the criterion is actually calculated together
with solving the conservation laws, in which the similar smoothness indicator should
be calculated. q

4.4.2 Strategy for adaptation

The refinement and coarsening procedures are handled separately. Both procedures

have similar steps for vectorization:

1. handling the inside of cells which are flagged to be refined or coarsened,

2. handling the edges of the flagged cells,
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Figure 4.10. Refinement strategy: father cell ABCD is divided into four sons EBFO,
OFCG, HOGD and AEOH.

3. arranging memory.

Step 1 is conducted based on cells, and updates all inside information, such as edge
deletion and adding of finer cells, which is independent of other cells. Step 2, based
on edges, renews every edge of refined or coarsened cells and its two neighboring
cells, which may be done without influencing other edges. In this way the adaptation

procedure has no data dependence and can be naturally vectorized.

In step 1, a cell to be refined is divided into four subcells or sons as shown in
Fig. 4.10. If an edge is split into two subedges, we call the edge a mother, and
the subedges daughters. The refinement level of sons is equal to their father cell’s
level plus one; the level of the coarsest cells is set to zero. To avoid unlimitedly
adding fine cells around shock waves, either the maximum level of refinement or the
minimum cell volume or both should be prescribed. When the level or the volume
of a cell exceeds the given limit, further refinement is prohibited. For convenience,
if the maximum level is three in one calculation, it is called 3-level refinement, and

so on. Fig. 4.11 illustrates a 3-level refinement.

In the refinement procedure, it is required that no two neighboring cells differ
by more than one refinement level. This rule prevents pathologically large volume
ratios under certain circumstances. In Fig. 4.11 refining cell 5 is then not allowed,

otherwise the levels of two sons of cell 5 and cell 2 differ by two.
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Figure 4.11. The levels of refinement. Suppose cell ABCD is one of the coarsest cells;
the level of it is then 0. The refinement level of a son equals to that of his father plus 1.
In the figure the level of cell 1, 2, 3 and 4 is 1; the level of cell 5, 6, 7 and 8 is 2, and so on.
It is not allowed that the difference between levels of two neighboring cells is more than
1. Refining cell 5 is then not allowed.

In Fig. 4.10, the locations of new nodes E, F, G and H on mother edges are
defined by the ratio of the lengths of two daughters,

_ Length of daughter 2
~ Length of daughter 1’

(873}

In most situations the ratio is set to 1, i.e. new nodes are the centers of mother
edges. However when simulating viscous flows along a solid surface, stretched cells
are more suitable in the boundary layer. The subscript bl denotes the ratio in the
boundary layer. Only cells which are close to a solid boundary in integrating the
Navier-Stokes equations are refined by following the parameter oy, and in the other
cases the ratio is set to 1. The locations of the node inside can be optimized to get
good shapes of the sons. In the present adaptation the locations of node O are given

by a weighted average of the new nodes at outside edges,
ro = [(werg +rg)/(1+wg) + (wpry +1r)/(1 + wi)]/2.
The weights wg and wy are
wy = (aap +ape)/2, wi = (aap + apc)/2,
where a4p the ratio of the lengths of two daughters of edge AD, and so on.

Fig. 4.12 illustrates refining a cell along a viscous boundary. Suppose edge AB

is the viscous boundary, nodes F and H are moved close to the boundary as shown
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Figure 4.12. Directional refinement inside the boundary layer. A highly stretched mesh
can be generated by repeatedly refining cells along the viscous boundary.

a moving shock wave
e

L Lo b

L3 L2

Figure 4.13. Illustration of pre-refinement. Cells in column ¢ cannot be refined to capture
the coming shock wave, because the level of refinement in column d is lower. The cells in
column d has to be pre-refined.

in Fig. 4.12a. After conducting a few levels of refinement, stretched cells are formed

along the boundary as shown in Fig. 4.12b.

In unsteady calculations, the rule that two neighboring cells differ by no more
than one level may mismatch moving refined regions, say shock wave regions. An
illustration is shown in Fig. 4.13. The refinement level of cells in column a and b are
3; these in column c and d are 2 and 1 respectively. A shock wave moving from left
to right lies in the finest cells. The shock wave will arrive at column ¢ in two time
steps by using a high CFL number; then the cells in column ¢ should be refined to be

able to capture the shock wave. Since a shock wave can be resolved within two cells
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Figure 4.14. Memory organization

by a high-resolution scheme, cells in column d are not able to detect that the shock is
coming from its closest neighbouring cells. The adaptation criterion then labels the
cells in column d, refine = false, and thus column ¢ cannot be refined because of
the rule. Consequently the shock wave moves into the region with coarser cells and
is smeared dramatically. This indeed happened in our early unsteady calculations.
To combat this problem, pre-refinement is introduced. Once a cell cannot be refined
due to the level difference between itself and its neighboring cells, the neighboring
cells should be pre-refined. In the case shown in Fig. 4.13, the cells in column d are

pre-refined, no matter what they are labeled.

In coarsening procedure only when all four sons are flagged coarse = true, are
they deleted. In Fig. 4.10 all sons and inside edges are removed, and recovered to
their father cell.

Step 1 and step 2 change the status of some cells and edges, for example from
sons to fathers. Step 3 just cleans and arranges the memory, and divides cells
and edges into two groups, father/non-father and mother/non-mother, according to
their updated status. The non-mother edges are further divided into boundary/non-
boundary edges. These classifications generate an efficient data structure for a
flow solver. The memory arrangement is also vectorized. Actually, the adaptation
subroutine without vectorization of memory arrangement would require about 200%

additional computer time in Cray C90.

Fig. 4.14 illustrates memory strides of the edge list and the cell list after the
adaptation procedure. All cell indices are saved in the cell list, while edge indices in

the edge list. Both of them are constant strides, which are required for vectorization.
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Figure 4.15. Illustration of the active mother edge. Active mother edge AB is referred
by cell 4, then information of it should be updated.

The lists are very efficient especially for a flow solver using a finite volume method.
Non-fathers are just non-overlapping physical control volumes. These control vol-
umes are numbered consecutively in the cell list. On the other hand, all non-mothers
are all interfaces of the control volumes. Flux evaluations may be computed along

the list of non-mother edges with a vector process.

Some mother edges need to be specially treated under the cell-edge data struc-
ture. These edges are split, but are still used by their neighboring cells; they are
called active mothers as shown in Fig. 4.15. If only one side of an edge is refined,
the edge will be referred by the cell on the another side, then the edge is an active
mother. In Fig. 4.15, edge AB is an active mother. The error indicator er of an
active mother is set to the larger one of these of its two daughters. A numerical flux
through an active mother edge is equal to the sum of the daughters. Note that if
both neighboring cells are refined, no information of their shared mother edge, say

EF in Fig. 4.15, is required in the flow solver.

4.4.3 The conservative variables at new cells

In both refinement and coarsening procedure, some new cells appear. The conser-
vative or primitive variables at these cells have to be imposed by the information
on the old mesh. In the globally remeshing adaptation method [15], [16], [17], [18],
all information of new mesh are interpolated in some way from the old ones, which
is very expensive. In the local adaptation method, only the new cells are required

to be calculated. In practice the number of the new cells is a very small portion of
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total cells, usually less than 5% for unsteady flows and much less for steady flows.

In refinement procedure, the conservative variables of new sons are interpolated
from these of their father. Suppose a father ¢ and one of its sons j, as shown in

Fig. 4.16a, the interpolation reads
& =&+ Vil EAry;, (4.3)

where £ represents a conservative variable. Because the gradient at last time step
has been evaluated in solving the conservation laws?, it is directly used for the sake
of efficiency, which introduces only a second-order error compared with using the
gradient of the new step. In coarsening procedure, flow variables of a coarsened
father cell are the volume-weighted average of these of its “dead” sons,

1
& = AQ, > A, (4.4)

where Y sums four sons.

Remark The interpolation and the weighted average for new cells in the adapta-
tion procedure are conservative. The conservative property of the volume-weighted

average (4.4) is very straightforward,

AQE = AQE.

However it is not so obvious for the interpolation (4.3). The sum of new conservative

quantity inside four sons is
ijAQj = Z(& —+ V?_lfArji)AQj = fz Z AQJ + V?_lé Z AI’jiAQj.

Note that node 7 is the centroid of the father cell and j are those of the sons, so

At = [ w-ryae= [ (x-r)de =0,
> ArQ =) AQj(r r;) AQi(r r;)
then
Z fjAQj = szQz
Clearly locating the solution at the centroid of a control volume is indispensable to

preserve conservation in the interpolation. §

3In the VAS2D, because only the gradients of primitive variables are evaluated in solving the
conservation laws, the gradients of conservative variables in the cells to be refined are calculated
from these of primitive variables.
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a. b.

Figure 4.16. Flow variables at new cells. a. in refinement procedure, conservative vari-
ables of new sons are interpolated from these of their father; b. in coarsening procedure,
conservative variables of a father cell are volume-weighted average of these of its “dead”
sons. Both the interpolation and the average preserve conservation.

4.4.4 Efficiency of vector processing of the adaptation

The adaptation subroutine includes 32 loops and about 1,100 Fortran lines. All
loops are vectorized. Its practical vectorization efficiency is tested by refining one
cell from level 0 to level 6 (4096 cells), then coarsening the refined cells from level 6
to level 0. Fig. 4.17 shows the average CPU time normalized by 10,000 cells. No flow
solver and data interpolation are computed in this test. The CPU time is decreased
with increasing total cell numbers. When the total cells are over 1,000, the speedup

is about 30. This indicates that the adaptation procedure is well vectorized.

4.5 Unstructured flow solver

4.5.1 The two-dimensional conservation laws

Consider the conservative vector quantity per unit volume U, in an arbitrary con-
trol volume 6¢2, fixed in space and bounded by a closed surface S with the outward
vector dS (see Fig. 4.18). The conservative vector quantity are namely mass, mo-
mentum, and energy. The local intensity of U varies through the effect of fluzes
F, which express the contributions from the surrounding points to the local value
and through sources. These sources can be divided into volume and surface sources,
however only surface sources Q; are considered in this thesis. The conservation laws
are expressed in stating that the variation per unit time of the quantity U within

the control volume 42 should be equal to the net contribution from the incoming
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Figure 4.17. Vector efficiency of refinement and coarsening procedure

fluxes through the surface S and the surface sources,

0

- 0 =— F . - dS. 4.
o | ud /5s dS+/55QS as (4.5)

The two-dimensional Navier-Stokes equations in the form of (4.5) read

P pu - pv
Ul Fo pu?  puv
pv |’ puv  pv? ’
pE pEu pEv
0 0 (4.6)
_ —-p + Tax Tyx
Qs - Cpt, ;
—PU + Tpplh + Ty + KT, —pv + Ty + 7y v + KT,
where total energy pE is the sum of its internal energy and its kinetic energy
1
pE = p/cvdT—i— §p(u2 + v?), (4.7)
and for a Newtonian viscous fluid the viscous shear stress tensor is equal to
2
7ij = (005 + Ojvi) — (V- v)dygl, (4.8)

or explicitly ” )
Tew = SH(2Up — Uy
Tey = 72_y1‘ - N(uy + vl‘) (4'9)
Tyy = 5120y — uy)
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ds

Figure 4.18. General form of the conservation laws

Velocity v = (u,v) is used in describing the conservation laws, however v = (vy, v)
is temporally adopted for the stress tensor (4.8) for the sake of simplicity. The
conservation laws should be supplemented by the constitutive laws and by the def-
inition of the coefficients of dynamic viscosity p and thermal conductivity k. The
state equation and the ratio of the specific heat coefficient under constant pressure,

¢p, to the coefficient under constant volume, ¢,, are taken as

p=pp,T),

%
Co

")/:

In many instances a compressible gas can be considered as a perfect gas, even if

viscous effects are taken into account, and the equation of state is written as
p = pRT, (4.10)

where R is the universal gas constant divided by the molecular mass of the gas. The
perfect-gas law is accurate to £10% in the range 1.8 < T'/T.,; < 15 (see [19]), where
T, is the temperature at the critical point. For air, the range is 240K~2000K. As

a direct consequence of the perfect-gas law the specific heats follows

V()R
W= Smy—1
R
w0
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Table 4.1. Viscosity and thermal-conductivity parameters in Sutherland law for gases,
T. = 273K. (Transformed from White [19])

Gas | e, 10 %g/(sm) S,, K | k., J/(smK) Sk, K
Air 17.16 111 0.0241 194
Ar 21.25 144 0.0163 150
N, 16.63 107 0.0242 167
O, 19.19 139 0.0245 222

In reality, the specific-heat ratio v tends to decrease with temperture, but the ap-
proximation v = constant is accurate over fairly wide temperature variations. Under

the approximation v = constant, the total energy (4.7) becomes

p L 2
EFE=—+- . 4.11
p 7_1+2P(U+U) (4.11)
The coefficients of dynamic viscosity p and thermal conductivity & are functions of
temperature T'. Following Sutherland’s formula they are taken as, with temperature

in Kelvin (see [19]),

1= ne(T/Te) P et (4.12)
I
T.+ S

k= kc(T/TC)3/2%S:, (4.13)

where T¢, u. and K, are reference values, and S, S are the Sutherland constants,
which are characteristics of the gas. These values for some common gases are given
in the table Table 4.1.

The Navier-Stokes equations are non-dimensionalized by defining some charac-
teristic constants. We choose the characteristic density pg; length Ly; temperature
Ty; velocity Uy = (RTy)"?; coefficient of dynamic viscosity g = p(Tp); coefficient
of thermal conductivity ky = k(T}) and the specific heat coefficient under constant
pressure c,, = 7R/(7 — 1). The combination of these values gives two fundamental

parameters: Reynolds number

UyL
Re = 'OON‘; 0 (4.14)
and Prandtl number
Pr= % (4.15)
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The dimensionless conservation laws are the same as the dimensional ones, but

the coefficients are changed to

1 T3/2 1+ 85,/T

= — 4.16
H=Re’ T+8,/Ty (4.16)
1 1+ S /T
PR o 1t S/ To. (4.17)
v —1RePr T+ Si/Ty
with the dimensionless equaiton of state
p=pT (4.18)
and the dimensionless sound speed
c= (vI)Y2. (4.19)

The Euler equations are obtained by setting = 0 and k£ = 0 in the Navier-Stokes

equations.

4.5.2 Finite volume method

The finite volume method solves the conservation laws by directly applying them
to every non-overlapping discrete volume the summation of which covers the whole
computational domain. The conservation laws (4.5) are written for a discrete vol-

ume,
0

[, vda - /AS(QS _F).dS. (4.20)

Equation (4.20) is approximated by numerically evaluating the two integrals, then

one has, for volume 1,

o .
5 (UiAQ) == 3" Fy, (4.21)

faces

where F, is the vector of outward fluxes through face k. (4.21) states that the
change of the conservative values of volume ¢ is determined by summing its fluxes
through all faces. This is the general formulation of the finite volume method.
The shape of volume A(); is arbitrary. Modifying the shape and the location of
the control volumes associated with a domain gives considerable flexibility to the
finite volume method. In addition, direct discretization of the integral form of
the conservation laws guarantees that the conservative quantities, namely mass,

momentum and energy, will preserve conservation at the discrete level.
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Remark Tt is seen that (4.21) numerically integrates (4.20), thus introduces the
truncation errors. Let’s first consider the error in evaluating the integral on the left
hand of (4.20),

/AQ U0 = /AQ[UC +(VU), - (r — 1.)]dQ = U,AQ + O(AQ?) (4.22)

where the subscript ¢ denotes at the centroid of the control volume A€). It is clear
that if the variables are located at the centroid, the integration just introduces the
error of O(AQ?), then it is second order accurate. However if they are located at
point ¢ other than the centroid, a first-order error appears,

| UdQ =UAQ + O(AQ) = UAQ — (VU)e - raAQ + O(AR). (4.23)
Q

Since the error in the integration is of second order or worse, and since higher
order integration becomes extremely complicated, a second-order scheme seems more

appropriate on the unstructured meshes. §

The simplest method to calculate the integral on the right hand of (4.20) is the
trapezoidal rule. The rule replaces the flux function by a linear one on each face,

then the flux approximates to the value at the center of the face C,

F,=—(Q,—F)c-AS. (4.24)
Assuming every value at the centers is exactly known, one may get the error intro-
duced by the trapezoidal rule is O(AQ'?) (see reference [20]). However if the value
at the centers of faces is unknown, it is usually linearly interpolated from point 7,
then additional error is also O(AQ!?). Clearly for an arbitrary control volume, the
finite volume method is not better than first order even with the linear reconstruc-
tion. For the scheme to be second-order accurate, either the first-order errors are

cancelled by using a mesh with high quality, or high order reconstruction is required.

In the VAS2D, any domain is represented by quadrilaterals. The control volume
is naturally taken to be a quadrilateral. The quadrilateral mesh cells such as these
shown from Fig. 4.4 to Fig. 4.7 are all discrete control volumes. Applying (4.21) to

a quadrilateral volume i, we have

0 LI
E(UZAQi) =—> Fy, (4.25)
k=1
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AS;

Figure 4.19. Control volume

where A(); denotes the volume of the cell . The sketch of the control volume is

shown in Fig. 4.19.

Following the two-step smoothing Lax-Wendroff scheme in Chapter 2, (4.25) is

further written as

Ut — U, ..
L IAQ =S T
At Tk
At AL
Ut = U, — SR (4.26)
AQ; =

where FZ+1/ ? are fluxes obtained by the predictor step, and located at the center
of the interface or the edge. Since the variables are unknown at the center, they
are interpolated from the centroid. The predictor step locally solves the modified
two-dimensional Lax-Friedrichs scheme at the interface. Both the interpolation and
the predictor step necessitate estimation of the gradients at every cell. The gra-
dient evaluation will be discussed in Section 4.5.3, and the predictor step and flux

evaluation in Section 4.5.4

4.5.3 Least square method

There are two methods for estimating the solution gradients within each control
volume. One applys the Green’s theorem to provide an evaluation of the gradients
(see, for example, [2]). Another is least square method. The former will not be con-
sidered in the thesis. Least square method is sometimes referred to as the minimum
energy reconstruction. It simply consists of fitting a linear function to the values of

the neighboring nodes using the least-squares technique.

Suppose we are seeking the gradient V& = (&;,§,,&.) of a scalar function ¢

at node 7. Values & and &; at node ¢ and its neighboring nodes j are known.
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The gradient is estimated by minimizing the distance between &; and a piecewise

approximation
f;- =&+ VE- Ary,
where Arj; = (Azji, Ayji, Azji) = (¢ — x4, Y — Yi, 2 — 2;). The distance is expressed

as

Z(fj - f})g = Z[fj —(&+ Ve Arji)]27

J J

where }_ represents summing all neighbor nodes of node 7. Minimizing the distance
J
leads to a linear system,
(CAz;Az)é + (CAz;Ay)é, + (CAz;Az)é = X Az;AL
J J J J
(CAydr;)e + (ZAyAy& + (ZAylz)E = X AyAL
J J J J
(C AziAzi)ée + (ZAziAyu)6 + (L AziAzp)l = Y AzAE
J J J J
or, simply
Ax=Db

where A are a matrix of the coefficients, and x = (&,,&,,&,)". Then we have
x =A"'b,

where matrix A ! is the inverse matrix of A, and its elements satisfy

cofactor of Aj;

(Ai )ij = |A|

The cofactor of the element A;; in the square matrix A equals (—1)"*/ times the
determinant of the matrix which A becomes if its ¢th row and jth column are
deleted. If every element in any one row (or column) of A is multiplied by its
cofactor, and the products added together, the result is just the determinant |A]|.
The elements of matrices A and thus A~! are functions of coordinates, so that
A~! can be computed in a preprocessing step and stored in memory. Note that the
matrix A ! is symmetric, so six elements are enough to store it. In 2-D calculations,

the linear system degenerates to
(CAzjAz)ée + (CAzuAyE)E = X ArAE

j J J (4.27)
(%:ijiiji)fx + (%:ijiiji>£y = %:ijiAfji
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and
1 %: Ay;iAy;i — > Az Ay

A—l - J

J J J

For an adaptive quadrilateral grid, some edges of a quadrilateral cell may be
split, then it has two neighboring cells outside of each of the edges. In calculating
coefficients in (4.27), the sum of these two cells is averaged in the VAS2D. Numerical

tests show the average improves the accuracy a little.

4.5.4 Evaluation of fluxes through cell faces

The fluxes through cell faces consist of inviscid fluxes, viscous fluxes and smoothing
fluxes. The inviscid fluxes are convection terms and pressure surface terms, or those
in the Euler equations. The viscous fluxes are used here to describe all terms that are
specific to the Navier-Stokes, i.e., viscous dissipation and thermal diffusion terms.
The smoothing fluxes, which are natural extensions of those on the structure grid
in Chapter 2, are added to suppress spurious oscillations. Then the vector of fluxes

through an interface AB as shown in Fig. 4.9 is

F - Finviscid + Fviscous + Fsmoothing7 (428)
where
PUn
- . pulUy, + Py )
FanlSCld - ,Ovlun _|_p,n2 ) (429)
(2 + 5o +0%))u,
0
R — + Tyn)
Fviscous - (T:t.’tnl y’"2 ; 4.30
—(Tayna + Tyyn) ’ (4.30)
— (Tt + Toyv + KT )01 — (Tyett + Tyyv + KT, )09
—Pall] — Pyl
Boooming = | OPWab1 — (owlytts | 431
thing —(pv)apts — (pV)y1t5 (4.31)
—(pE)ziy — (pE)yis;
and

Uy = UNT + VN9,
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AS = (n1,n9) = (Ayan, —Azap).

The primitive variables which appear in above fluxes are the values obtained by a
locally predictor step located at the central point C'. The gradients of the primitive
variables are locally modified. Since only the gradients of the primitive variables
have been calculated, the other gradients are locally calculated. For instance (pu), =
pu; + pru, and so on. We remark that the method of flux evaluation discussed in
this section is suitable for a control volume with any shape, triangle, hexagon as
well as quadrilateral. These control volumes may be defined by either cell-centered

or vertex-centered data structure.

The predictor step

The predictor step locally solves the two-dimensional Euler equations at the center
of an interface. Variables at the center are interpolated from one neighboring cell,

for density

pc = pi + (Vp)c - Ary. (4.32)
The solution is then advanced by half time step,
P = po + (1/2 = m)At(pi)c, (4.33)

where p is a local smoothing coefficient, and will be discussed later. Other primitive
variables p,u and v are treated similarly. Time derivatives such as (p;)c in (4.33)

are determined by the two-dimensional quasilinear Euler equations,

M, = —AM, — BM,,

where M are primitive variables, (p, u,v,p)T, and matrixes A and B are
u p 0 0 v 0 p 0
0w 0 1/p |, 0w 0 O
A= 0 0 v 0 |’ B = 00 v p (4.34)
0 v 0 wu 00 vvp v

The gradients are locally modified, and will be shown in the next subsection. After
the modification, the predictor step actually solves the Euler equation by the Lax-
Friedrichs scheme at the central point C'. It should be emphasized that the present
method to determine the state at an interface is truly multi-dimensional, since not

the Riemann solver but the original Euler equations are used.
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Local gradient modification

The simplest way to determine the gradients at the interface are averaging those of

two neighboring cells, for density,

(Vp)&" = [(Vp)i + (Vp);]/2. (4.35)

The computational stencil for the average is approximately four cells in direction
l;;. The stencil for the average is always four cells on a regular grid as that shown
in Fig. 4.20, and it is still approximately four cells in direction 1;; on a quadrilateral
mesh. Finally the stencil for evaluating cell ¢ will be five cells at each dimension,
which is much larger than a physical wave can propagate. Therefore, special treat-
ment is prefered to make it more compact. In the VAS2D the local gradients at the
interface are calculated by a compact operator, which forces the gradient along the
direction 1;; to be
Pj — Pi

Lj - (Vp)o = AL (4.36)
ij

In practice (4.36) is easily realized by a modification of the averaged gradient
(Vp)o = (Vp)e™ + [%55 — (Vo)™ - Lijlly. (4.37)

It is seen that the gradient (Vp)c satisfies (4.36) after the modification. Other
variables, velocities and pressure, are treated similarly. Note that after local modi-

fication, the interpolation from which cell in (4.32) becomes trivial.

Remark The local modification of gradient is necessary to make the scheme
compact. Because the gradient in an interior cell is obtained from four neighboring
cells,the stencil of the simply averaged gradient (4.35) has eight cells, as shown in
Fig. 4.20a. Since the modification (4.37) forces the gradient along direction 1;; be
(4.36), it cleans up the information from cells ¢ — 1 and j + 1. The stencil for this
modified gradient then becomes compact as shown in Fig. 4.20b. This modification
is locally conducted between two neighboring cells, so that it can be applied under

an unstructured data structure without difficulty. q
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Figure 4.20. Stencil of the local gradient. a. the averaged gradient (4.35); b. the
modified gradient (4.37). The modified gradient uses a more compact stencil.

Determine the smoothing coefficient

Following the method on a structured grid, the indicator located at the interface is

¢ = max(¢i, ¢;),

where ¢; and ¢; are calculated in an unstructured way as that in calculating the

error detector in the adaptation process,
> [(ViM¥) e — (Vi M*);|/ 0]
co-+ = [|(VeMO| /3]

¢i = : (4.38)

> “(VIMIC)C - (Vsz)j|/Mﬂ
=X _ : (4.39)
o+ 2 “(VZM'“)H/Mﬂ

b;

The smoothing coefficient along the wave direction is taken as, (see (2.61))

p = min[pg, max (0, po — (1 — 2ug)re)], (4.40)
where,
1 —¢c
ro = : 4.41
T 1+c (4.41)
and
to = oy (1 < a<3/2). (4.42)

The coefficient i, corresponds to the artificial dissipation of the first-order upwind
scheme, and is determined by the local maximum CFL number,
O_fast

o1 + ofest)’ 443

Mup =
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The coefficient p is decomposed to the Cartesian coordinates, by assuming p is along

direction of the velocity difference between i and 7,

B du
= I(du2 ) T o=k
B dv
H2 = |(du2 + dv?)V/?2 + 10— -
Then
: (Az)?
M1 = Hthnl»
. (Ay)

MQ_HQ At na,

where the grid size is that between cell 7 and 7,
rj; = (Az, Ay).

4.5.5 Boundary conditions

In order to calculate the gradients and to solve the conservation laws by numeri-
cal methods described in the previous sections, suitable boundary conditions must
be prescribed. If all variables were known at a boundary from the knowledge of
the physical input, there would be no difficulty. However, this is generally not the
case with the Euler and Navier-Stokes equations. At the boundaries, waves are
propagating either outward or inward. The outward propagating waves have their
behavior defined entirely by the solution at and within the boundary, and no bound-
ary conditions can be specific for them. The inward propagating waves depend on
the solution exterior to the computational domain and therefore require boundary
conditions to complete the specification of their behavior. More general discussion

of boundary conditions may be found in [21], [22].

A schematic of boundary cells is shown in Fig. 4.21. Suppose cell i is a cell
with a boundary edge AB. Point m is the image of ¢ reflected by the boundary
AB; point C is the center point of edge AB. Cells j,k and h are three neighbors
of cell #; some of them may not exist in the case of complicated boundaries. The
reconstruction procedure for various types of boundaries depends the definition of
variables at m, while the fluxes depends the definition of variables at the center C.

Since under the cell-centered data structure, the reference from one edge, say AB,

106



Figure 4.21. Schematic of the treatment of boundary conditions

to far interior neighboring cells, 7, k and h, is associated with rather complex logic,
particularly because of the possibility that some of these cells may not exist at all. It
is decided only to use information obtained from neighbor ¢ to impose all boundary
conditions at the boundary edge. The solver loses little accuracy in space by the
limited information to which it accesses, but the resulting simplicity and locality
of the method may outweigh its drawbacks. In fact, if the order of approximation
near the boundary is equal to the scheme order minus one, the overall accuracy of
the scheme is not affected [21]. Therefore, in the VAS2D, flow variables that are
not physically specified at boundary edges are interpolated from interior neighboring
cells in space, while time accuracy is achieved by locally solving the Euler equations.
In the interpolation, gradients near boundaries are modified to be compatible with

the physical conditions.

In reconstruction procedure, gradients at node cell ¢ are usually constructed by
not only the interior neighbors j, £ and A but also the image point m. The flow
variables at m have to be imposed according to the type of boundaries. For inlet
and outlet boundaries, image point m is not taken into account, i.e., gradients at cell
1 are calculated from other neighboring cells. For the inviscid solid wall boundaries
or symmetric lines, the tangential velocity along the boundary is the same, and the

normal velocity changes the sign,
t t n n
Pm = Pis Pm = Diy Up = Uy Upy = —U; -
However the case of viscous solid wall boundaries is more complicated. For a wall
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with constant temperature 7;,, or an isothermal no-slip wall, the conditions imposed
are
Pm = 2pZ/Tw — Piy Pm = Piy Um = —Uj, Uy = —Uj;

for a wall has no heat flux, or an adiabatic no-slip wall, they read
Pm = Piy Pm = Piy, Um = —Ujy Um = —V;.

These boundary conditions are deduced by deploying ordinary boundary conditions
at the edge AB. For example, no-slip wall has usp = 0, and a second-order average
gives uap = (u; + Uyp)/2, then no-slip wall gives u,, = —u;. In the isothermal
wall, the condition for density should be p,, = 2p,, /T, — p;; because the pressure
at wall p,, is unknown, pressure at cell i is used instead. The lost accuracy of this
approximation at wall is corrected by modifying the gradients there during solving

the conservation laws, which will be described below.

In the flux evaluation, all smoothing fluxes are set to be zero, and other fluxes
through edge AB are determined by the flow variables located at the interface center
C. The primitive variables there at the time step n are interpolated from unique
neighboring cell 1,

Mc =M, + (VM)¢ - rei, (4.44)

where the gradients (VM)¢ are modified ones from these at cell i based on the types
of boundaries. To be able to achieve second-order time accuracy, the final state at

point C is given by further propagating the solution by half time step,
M2 = Mo — 1/2AtA - (VoM)e + B - (V,M)c],

where A and B are the same as that in predictor step. For the inlet or outlet

boundaries, the gradients (VM)q are the same as those at cell i,

and the fluxes are identical to these through internal edges. In the VAS2D the flow
variables at supersonic inlet boundary cells are all fixed. For inviscid solid boundary,

only the gradients of density and pressure are set to be the same as these cell i,

(Vp)e = (Vp)i, (Vp)e = (Vp)s;
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the normal component of velocity gradients (Vu); and (Vv); is modified such that
the normal component of the velocity obtained by the interpolation (4.44) equals to
zero at the boundary. Denote e' and e” are unit vectors on the tangential and normal

directions of edge AB, one has the gradients of tangential and normal velocities
(Vu'); = (Vu); - €', (Vu); = (Vu); - e".

Keeping the tangential gradients unchanged, and modifying the normal gradients,

one gets
(Vu)e = (Vu');,

(Vu")e = (Vu"); — %[uf + (Vu"); - railres; (4.45)
then transforming them back to the Cartesian coordinate,
(Vu)e = (Vu')eel + (Vur)ce}
(V) = (Vul)cel + (Vu™)oel.
The fluxes follows
0, p&"?na, pit Py, 0)T. (4.46)

In solving the Navier-Stokes equations, the treatment of gradients at the inlet
or outlet boundaries is the same as that in the Euler equations. By adding viscous

terms in (4.46), the fluxes are

(07 (pC - T:r:r)nl — TayN2, (pC - Tyy)nQ — TayNa, O)T. (4.47)

However, the viscous effects are dominated at the viscous solid walls, and the Euler
equations are not supposed to be a good approximation there. Therefore the pres-
sure at the wall is directly interpolated by following (4.44) without propagating the
solution by half time step. To be consistent with no-slip conditions, the gradients of
velocity should be modified such that velocity interpolated by (4.44) is zero at the

boundary. For an isothermal no-slip wall, the modifications read

(Vp)e = (Vp);
(VU)C = (VU)Z - r%i [Uz + (VU)Z : rCi]rCi; (448)
(Vo)e = (Vo) — - [us + (Vo); - reilres,

2
Ci
where local density gradients are calculated for evaluation of heat flux. The mass

and momentum fluxes are the same as that in (4.47), and heat flux becomes

ET,ny + ETyna, (4.49)
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where the gradients of temperature is given by

VT = [(Vp)o = Tw(Vp)dl/po-

For an adiabatic no-slip wall, the modifications read

(Vp)e = (Vp);
(Vu)e = (Vu); — T%i [ui + (Vu); - reilres, (4.50)
(Vv)o = (V)i — = [vi + (Vv); - reilres,

2
Ci
with fluxes the same as these in (4.47).

4.5.6 Flow solver under the cell-edge data structure

The flow solver can be easily constructed under the cell-edge data structure with
high efficiency. Since the flow solver computes the change of the conservative values
of all cells by integrating their interface fluxes. This procedure is done following a

routine that consists of four basic steps:

1. computing fluxes through non-mother non-boundary edges;
2. computing fluxes through non-mother boundary edges;

3. computing fluxes through active mother edges by adding their daughters’

fluxes;

4. computing the sum of four fluxes for every cell.

The computation of fluxes through an edge requires only its two neighboring cells
whose indices are explicitly saved for every edge, so that the flux evaluation is easily
vectorized. Similar efficiency is also achieved for other steps by the cell-edge data
structure. Adjacent connectivity information can be directly obtained. However, to
get the same information, the well-known quadtree or octree structure often needs
to climb up to the root of the branch and then climb down to neighboring cells,
which is difficult to vectorize if not impossible. The climbing process is avoided by
using the present cell-edge data structure. Note that because of step 3, step 4 simply
accumulates the fluxes of four edges no mater whether the edge is split or not while

preserving conservation.
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The flow solver following the four steps has almost no conditional statements,
which is usually very difficult for locally adaptive algorithms. Actually the only
conditional statements are in step 2, where it deals with five types of boundaries. In
fact, the kernel part of the solver, including gradient evaluation, integration of either
the Euler or Navier-Stokes equations, and treating different types of boundaries, is
just 460-Fortran-line long besides a few directives for vectorization and necessary
comments. Thus, the data structure is highly efficient for solving the conservation

laws, and can be conveniently applied to the modeling of other physical systems.

The time step is limited by the CFL number,

L
dt = CFL—2d&
lu| + ¢

where Legee is the length of cell edge. The practical time step is taken as the
minimum one chosen from the values for edges NE1 and NE2 of all cells. Another two

edges NE3 and NE4 are neglected, which is reasonable for any regular quadrilaterals.

4.6 Evaluation of the VAS2D

4.6.1 Efficiency of vector and parallel processing

Two cases are tested for measuring the efficiency of vector processing of the VAS2D.
Case 1 is a planar shock wave moving in a straight tube, and Case 2 is a planar
shock diffracting over a 90° corner. Both cases consist of 12-28 thousand cells.
The results are shown in Fig. 4.22. The solver without adaptation ( Refinement
level = 0 ) is found to give a maximum speed of around 475 Mflops, and requires
only 2.2 pus/cell/step in single processor mode. The vector length is close to 121 of
maximum 128, which hardly changes with the refinement level. When the solver is
coupled with adaptation ( Refinement levels = 1,2,3,4 ), the measured speeds are
ranging from 365 to 405 Mflops. Note that the speeds decrease with high refinement
levels. For 4-level refinement, the solver require approximately 3 ps/cell/step. This
speed is around two orders faster than an adaptive solver on the Cartesian grid con-
ducted in a workstation using the upwind scheme with either exact or approximate
Riemann solvers [11], [23]; it is much faster than an adaptive solver on a similar

machine [24] 4, which uses a central difference with conventional artificial damping.

4The explicit data of the efficiency of the solver in the paper [24] is not available. The authors
executed the solver coupled with adaptation procedure with an initial grid consisting of 60 thousand
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Figure 4.22. Vector efficiency of the VAS2D with the Euler solver using different refine-
ment levels

The VAS2D performs nearly four times as fast as a well vectorized solver [25] ® on
triangular grids which permits no adaptation. It is believed that with adaptation the
VAS2D even perform much better, because the VAS2D is able to efficiently vectorize
the adaptation procedure. The efficiency is not only due to the well-vectorized data
structure but also due to the flow solver, which is a central-difference scheme with

the conservative smoothing method.

Parallel execution speed-ups of the VAS2D are shown in Fig. 4.23 as a function of
number of processors (CPUs). The results are obtained by Cray software atexpert.
It should be noted that the increase in speed is not in exact proportion to the
number of processors due to the additional overheads of partitioning the work among
processors. Another more important reason is the small number of cells that are to

be refined or coarsened. It is quite common in 2-D calculation hundreds of cells are

points and adapted a group of 4000 cells at each time step to measure performance. The total
execution time was 1.86s per step, then it was approximately 1.86/60,000s = 31us/cell/step. The
VAS2D is ten times as fast as this speed.

°In reference [25], the authors gave a data on Cray Y-MP run at 150 Mflops. It requires
0.39s/step for 15606 vertices, then the speed is 24.815/cell /step. Since the numbers of vertices and
cells are similar on a quadrilateral grid, the difference between them is not taken into account here.
We assume the solver could run at 450 Mflops on Cray C90, the speed may reach 8.3us/cell/step.
Therefore the present VAS2D is close to 4 times as fast as the solver without adaptation.
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Figure 4.23. Parallel efficiency measured by Cray performance tool atexpert

refined in one time step, which is a job just enough for one or two CPUs with a vector
length 128. The adaptation procedure conducts such a small job that most computer
resources are wasted when using 8 CPUs. The fully vectorized and parallelized flow
solver contributes most to the parallel speedup of the VAS2D. Actually even using
one processor, the VAS2D may calculate most unsteady and steady gas-dynamic
phenomena in one minute with a high resolution. However in 3-D computation an
adaptation procedure has to treat thousands of cells, then parallelism will become

more important.

4.6.2 CPU time distribution on subroutines

CPU time used in the main subroutines, mesh adaptation, gradient evaluation and
integration of the conservation laws is measured for solving both the Euler equations
and the Navier-Stokes equations. The test case computes shock diffraction with a
3-level refinement conducted at every time step. The test results are shown in
Fig. 4.24. 1t is found that the percentage of CPU time consumption varies no more
than 3% in other test cases. It is seen that the flow solver including reconstruction
and integration uses around 86% and 91% of total time for the Euler and the Navier-
Stokes respectively. Due to additional viscous and heat condition terms, the Navier-
Stokes reasonably consumes more percentages than the Euler integration. The mesh

adaptation requires less than 10% time. Except the error indicator that is calculated
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Figure 4.24. CPU time consumption by main subroutines: a. the VAS2D with the
Euler solver; b. the VAS2D with the Navier-Stokes solver. The data is gathered by Cray
performance tool flowtrace.
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with the flow solver, all changes caused by mesh adaptation, such as mesh refinement
and coarsening, the interpolation from the old mesh to the new mesh, and updating
the volume of cells, are included in the subroutine of mesh adaptation. Clearly
the overheads of mesh adaptation is very cheap. It should be mentioned that the
overheads of the adaptation procedure is usually much higher. For instance, for
an efficient 2-D adaptive solver on triangles [26], the overheads of the adaptation
is less than 5% of total computer time on a personal computer, but it increases
to around 50% on a vector machine because the adaptation procedure is poorly
vectorized. Kallinderis and Vidwans’s adaptation procedure [24] requires even over
80% on the connection machine CM-2. The high efficiency of present adaptation
should be contributed to the greatly simplified logic under the vectorizable cell-edge

data structure.

The percentage of the mesh adaptation decreases from 12% to 8%, in solving
the Navier-Stokes equations. It suggests that the overheads of mesh adaptation is
relatively lower with a heavy solver. Therefore the overheads of adaptation would

be much cheaper in solving complicated physical systems with chemical reactions.

4.6.3 Cartesian mesh vs. adaptive mesh

Compared with the Cartesian structured mesh, the overheads of an adaptive mesh
comes not only from the treatment of adaptation but also from its unstructured
data. For instance, a solver on the Cartesian mesh need not compute any geometri-
cal information at all; however an unstructured flow solver has to take into account
cell volumes, interface orientations, and gradients. In a vector machine the over-
heads usually becomes very large because of the difficulties in efficiently vectorizing
the unstructured solver especially the adaptation procedure. However the VAS2D
employs the essential vectorizable data structure, so that both the flow solver and
mesh adaptation are fully vectorized. In this section a quantitative comparison of

efficiency is made between the Cartesian mesh and the adaptation mesh.

Table 4.2 records CPU time and memory requirement, compared with these
on the Cartesian grid. If without adaptation but with all unstructured geometrical
calculations, it is found that the VAS2D requires 2.4 times of CPU time and 5.3 times
memory as much as the structured solver conducted on the same Cartesian mesh.

The structured solver is computed at a speed of around 450 Mflops. With mesh
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Table 4.2. Comparison of CPU time and memory requirement of the flow solver on the
kC)artesian mesh and the adaptive mesh. The data of the initial Cartesian mesh is set to
el.

Refinement levels 0 1 2 3 4
CPU time: adaptive mesh | 2.4 | 8.0 | 24.7 | 83.0 | 301.2
CPU time: Cartesian mesh | 1 8 64 512 | 4096
Ratio of CPU time 241101]0.39]0.16 | 0.074
Memory: adaptive mesh 5.3 |81]12.6| 225|433
Memory: Cartesian mesh 1 4 16 64 256
Ratio of memeory 5.312.01]0.79(035|0.17

adaptation, 1-level refinement is enough to compensate the overheads in CPU time,
and 2-level refinement to compensate the memory overheads. When the VAS2D
uses 4-level refinement, it is more than ten times as fast as that on the Cartesian
grid with only about 20% memory. The CPU time and memory ratios of two meshes

can be approximated described by

Memory : adaptive mesh o <Clevel>L.
Memory : Cartesian mesh memory overbeads | Ty ’
CPU time : adaptive mesh c <Clevel)L

CPU time : Cartesian mesh "0 °vrhead {7y ’

where L is the level of refinement. Cl.,o 1s the ratio of cell numbers between two
consecutive refinement levels, which is a problem-dependent value. In the present
test case of shock diffraction Cl.ye is around 1.7. For a uniformly refined grid Cleye is
exactly 4 which appears in the denominator. Generally speaking, compared with the
uniform Cartesian grid, the adaptive grid is more effective for a high refinement level.
However the highest level is practically limited either by unnecessary high resolution
with fine grids or by available memory and tolerable computer time. According
to personal experience, a four or five level of refinement is usually fine enough to
simulate flows with shock waves. Therefore by considering a 4-level refinement, it
is concluded that the VAS2D requires approximately 10% computer time and 20%
memory as much as a solver on the uniform Cartesian grid. In addition the VAS2D

may treat complex geometry straightforwardly.

Fig. 4.25 gives a few results of the test case. It is seen that the density contours

are virtually independent of the grid adaptation. Of course, shock waves become
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linearly sharper for high level adaptations. Because the post-shock flow is subsonic,
expansion waves propagate upstream. The incident shock wave is gradually atten-
uated to the downstream wall. These phenomena are resolved similarly on three
different grids. The finest cells are economically distributed around shocks and vor-
tices. This is the reason that the ratio Cleye is around 1.7 which is much less than
4.

4.7 Numerical results

A variety of test cases have been carefully chosen to show the effectiveness of the
VAS2D. The test cases cover steady/unsteady, inviscid/viscid flows with weak /strong
shock waves. First subsections give the results of the Euler equations, including
shock diffraction (Section 4.7.1), supersonic channel flow (Section 4.7.2), and in-
teractions of shock / circular-cylinder (Section 4.7.3) and shock / square-cylinder
(Section 4.7.4); Section 4.7.5 shows a results of the Navier-Stokes equations, shock
/ boundary layer interaction; last subsection (Section 4.7.6) gives a comparison of
the solutions of the Euler and the Navier-Stokes solvers about shock wave moving

in a nozzle. The ratio of the specific heats is always assumed to be 1.4.

4.7.1 Shock diffraction

A shock wave diffracting at a sharp convex corner has become a benchmark problem
not only in the computational fluid dynamics but also for shock tube experiments
[27]. In the past three decades, many experimental and numerical results have been
published (for example Skews [28], Bazhenova [29], Hillier [30], Sun and Takayama
[31]). This subsection is devoted to shock wave diffraction over a 90° corner for shock
Mach number ranging from 1.3 to 16. To demonstrate the flexibility of the VAS2D,
computations are conducted under the same numerical parameters. The geometry
consists of three 1 x 1 squares. Every square can be divided to many fine cells. A
shock wave is initially at 0.5 to the left of the corner point. The CFL number is 0.7,
and it is unchanged for unsteady computations. A discontinuity may pass one cell
in one time step at such a high CFL number, so that the adaptation is performed at
every time step. 3-level refinement is adopted, and it is 256 x 256 x 3 cells if using

a uniform grid. The required CPU time is no more than 25 seconds in each case.

The results for shock Mach number 1.3, 1.6 and 2.0 are shown in Fig. 4.26. In
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Figure 4.25. Shock diffraction using different levels of refinement: M, = 1.6, CFL =
0.7, : a. No adaptation, 3072 cells, CPU time = 0.592s; b. 1-level refinement, 4773 cells,
CPU time = 1.98s; c. 2-level refinement, 7695 cells, CPU time = 6.09s.
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these cases the post-shock flow all are subsonic. The VAS2D exactly reproduces
the diffracted shocks, expansion waves, vortices. The secondary shock wave which
moves above the vortex is visible for M, = 1.6. Note that the finest cells shown in

the meshes clearly indicate these important physical configurations.

Fig. 4.27 gives strong shock diffraction with shock Mach number 4, 8 and 16.
Real gas effects are not considered here, because the main object of this section is not
to investigate physical phenomena. For strong shock diffraction, flow patterns close
to the corner are similar. There are expansion waves, a slipstream and a system
of secondary shock wave. These are well resolved for all shock strengths. Since
post-shock flows are supersonic, the expansion waves can not propagate upstream
and become the Prandtl-Meyer expansion fan around the corner. The vortex is not
observable for very strong shocks. A clear difference between strong shocks lies in
their reflection configurations on the downstream wall. The foot of M, = 2 shock is
almost perpendicular to the wall as seen in Fig. 4.26e; M, = 4 shock forms a sharp
turn there, but the waves behind it are somewhat continuous. The waves at the wall
for My = 8 can be recognized as a sharp discontinuity, or a reflected shock wave, then
it is a Mach reflection since a very short Mach stem is seen. For M, = 16 shock the
Mach stem is not visible anymore so the configuration is a regular reflection. These
changes qualitatively agree with experimental observations [29]. Combined with the
results in weak shock diffraction, it is clear that the smoothing flux efficiently cleans

oscillations behind shock waves with quite different shock strengths.

Fig. 4.28 gives a comparison between numerical and experimental shock diffrac-
tion for M; = 1.475. It is seen that the Euler solver resolves very well the main
wave patterns, such as the diffraction shock and upstream moving expansion waves.
However the secondary vortex which appears at the downstream of the corner in the
photo is not visible in numerical result. It suggests that generation of the secondary

vortex is due to the viscous effects.

4.7.2 Steady supersonic channel flows

Steady flows are computed in a channel with a compression corner, followed by
an expansion corner, which is similar to that in [11]. The length of computation

domain is 4. The inflow Mach number M = 2 and 4. Solutions are given at t = 4

for M =2 and t = 2 for M = 4. The upper and lower surfaces of the channel are
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Figure 4.27. Shock diffraction, 3-level refinement, CFL = 0.7: a.b. M, = 4.0, 20595
cells, CPU time = 23.0s; c.d. M = 8.0, 20817 cells, CPU time = 22.7s; e.f. M; = 16.0,
20349 cells, CPU time = 22.4s.
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Figure 4.28. Shock wave diffraction for M; = 1.475: a. experimental photo obtained
by holographic interferometry; b. numerical isopycnics obtained by the VAS2D with the
Euler solver.
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reflecting conditions, with a supersonic inflow on the left, and outflow on the right.
The grid adaptation is performed every three time steps. When using a refined grid,
the VAS2D calculates for 60% of total time on a coarse grid to get a good initial
state, then starts the adaptation procedure. Computer time is reduced by around

half using this simple strategy.

Fig. 4.29a gives a result on a coarse grid with a 15° corner. It is seen that shock
thickness is about two-cell size even when shocks are reflecting from the walls. The
grid has a similar cell size to that in unsteady computation shown in Fig. 4.25a. It
seems the transition region of a shock is narrower in steady computation than in

the unsteady one.

Fig. 4.29bc record the results using 3-level refinement. There is an attached
shock at the compression corner. The shock is reflecting from the upper surface and
forms a Mach reflection. But for M = 4 it forms a regular reflection, as shown in
Fig. 4.29de. The reflected shock interacts with the Prandtl-Meyer fan starting from
the corner, and then reflects from the lower surface as well. For M = 2 case, the
slipstream creates a discontinuity in isopycnics, emanating from the triple point and
nearly going parallel to the upper surface, as shown in Fig. 4.29b. It is recognizable

even in the very coarse grid in Fig. 4.29a.

A shortcoming of the smoothing or filter in computing unsteady [32] and steady
flows [33] is the fluctuation of contours. The present approach has successfully
overcome this. It is seen that density contours are smooth in expansion wave regions

even on a grid with different sized cells.

4.7.3 Shock / circular-cylinder interaction

Shock wave propagation over an obstacle is of interest in predicting the dynamic
response of structures to an internal or external explosion. A circular-cylinder is
one of the simplest obstacles with only one geometrical length scale, say its radius.
Unlike self-similar shock diffraction shown in Section 4.7.1, shock wave moving over
a circular-cylinder is truly unsteady. This subsection tries to show the ability of the
VAS2D in simulating such truly unsteady flows and to demonstrate the treatment

of smooth boundary such as a circle.

The computation is conducted on the initial mesh shown in Fig. 4.5 with 4-level
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Figure 4.29. Steady flow in a tunnel with 15° bump: a. M = 2, t = 4, with 1-level
uniform refinement; b.c. M = 2, t = 4, 3-level refinement, 11338 cells, 1670 steps, CPU
time = 47.8s; d.e. M = 4, { = 2, 3-level refinement, 11386 cells, 1381 steps, CPU time =
47 4s.
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refinement. The radius of the half circle is equal to 1. The results for M, = 1.7
are shown in Fig. 4.30 to Fig. 4.31. Fig. 4.30ab correspond to the instant when the
shock wave hit the cylinder. There are some refined cells visible behind the shock
wave, which are the vestiges of an initially discontinuous shock approaching to a
continuous shock. This phenomenon can also exist in the results using some other

schemes.

The shock wave configuration over the cylinder forms a Mach reflection, which
consists of the incident shock, reflected shock, Mach stem, and slipstream, as shown
in Fig. 4.30cd. The Mach stem moves over the cylinder surface, and then reflects
from the symmetric line. In Fig. 4.31ef, the Mach stem has been reflected and start
to create a new triple point there. The new triple point grows up, then a new
slipstream is generated stemming from it. Fig. 4.31gh clearly records the two triple
shock systems. The reflected shock that moves along the cylinder surface induces
the separation of a vortex bubble behind the cylinder. The present numerical results
agree with these computed by a second order Godunov-type scheme [34], and agree
well with the experimental observations except the region close to the cylinder where

the boundary layer is not negligible.

4.7.4 Shock / square-cylinder interaction

In numerical simulation, the initial mesh of shock / square-cylinder interaction is
shown in Fig. 4.7. The distance from the square center to its tip is taken as 1, and the
square is oblique to the horizontal line by 30°. The distances from the square center
to the upper and lower surface are 2 and 1.3 receptively. The asymmetric setup is
intentionally designed to generate complicated flows. The results for incident shock
Mach number M, = 2 are shown in Fig. 4.32 to Fig. 4.33. The shock configuration
in this test is actually a combination of most basic phenomena of compressible
flows, such as shock diffraction, reflection, vorticity generation, and interactions
of shock/expansion waves, shock/vortex. The VAS2D is able to capture the flows
without difficulty. On the other hand, it suggests that the scheme that combines

the Lax-Wendroff with conservative smoothing is robust.

It should be mentioned that the scheme tolerates irregular meshes. The mesh
cells around the square are very irregular, as shown in Fig. 4.32b. Some nodes have

fives neighbors, some have only three neighbors. From Fig. 4.32¢ and Fig. 4.33eg,
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Figure 4.30. Shock / circular-cylinder interaction, isopycnics and corresponding adaptive

meshes. Incident shock Mach number M, = 1.7, 4-level refinement, CFL = 0.7. a.b.
t = 0.0, 9735 cells, CPU time = 3.0s; c.d. t = 1.0, 12471 cells, CPU time = 18.6s.

126



=
i

ﬁ‘ jijIt,
\‘ Lﬁ‘ i7 7:
j R %jE

f.
g.
.0 ERNERESRES
- a—uw‘qkj
‘4—6&‘7\‘4‘&
“““ S
N T 1
h.

Figure 4.31. Shock / circular-cylinder interaction, isopycnics and corresponding adaptive
meshes (Continued). e.f. ¢ = 2.0, 20253 cells, CPU time = 47.4s; g.h. ¢ = 3.0, 29790
cells, CPU time = 101.5s, 1800 steps.
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density contours there are reasonably smooth, and no clear grid-dependent error is
visible. This property can also be seen in the results of shock / circular-cylinder inter-

action, where the mesh cells around the circle is rather skewed as seen in Fig. 4.30b.

Fig. 4.34 gives a result of shock wave interacting with a rectangle with the ratio
of length and width 4. By comparing with the experimental photo, it is seen that
primary wave patterns are well captured by the Euler solver. The shape and loca-
tion of main vortices agree very well. The disagreement is observable close to the
back wall of the rectangle, especially the system of secondary vorticies as has been

mentioned in shock diffraction pheonmenon.

4.7.5 Shock / boundary layer interaction

This section gives a result of the Navier-Stokes solver, shock/boundary layer inter-
action. The accuracy of the Navier-Stokes solver is first tested with the computation
of the viscous flow around an isothermal flat wall at zero incidence. The free-stream
Mach number is equal to 1, and the Reynolds number Re based on a unit length
is equal to 1.01 x 10%. The theory of boundary layer shows that for the coefficients
of viscosity and thermal conductivity are linear functions of temperature, local skin

friction coefficient remains the same as in incompressible flow (see, [35]):

Tw = 0.3324/u3/xRe,

where u is the non-dimensional free-stream speed and x the distance from the tip
of wall. Numerical results of the ratio of 7, to /u?/xRe along the flat wall are
plotted in Fig. 4.35. It is seen that the numerical results agree very well with the
boundary layer solution 0.332, but great discrepancy exists close to the tip. In the
region close to the tip of the wall, the variations normal to the wall become the
same order as those along the wall, so that the boundary layer assumption is not
valid there. This explains the discrepancy between the numerical results obtained
by the full Navier-Stokes equations and the approximate solution predicted by the
theory of boundary layer. The agreement in the regions far from the tip indicates

the excellent accuracy of the present Navier-Stokes solver.

In simulating shock / boundary layer interaction, an incident shock moves from
left to right, and reflects from the end wall. The reflected shock propagates over

and interacts with the boundary layer which is created behind the incident shock.
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Figure 4.32. Shock / square-cylinder interaction, isopycnics and corresponding adaptive
meshes. Incident shock Mach number M; = 2, 3-level refinement, CFL = 0.7. a.b. ¢ = 0.0,
8149 cells, CPU time = 4.3s; c.d. t = 1.0, 22981 cells, CPU time = 29.6s.
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Figure 4.33. Shock / square-cylinder interaction, isopycnics and corresponding adaptive
meshes (Continued). e.f. ¢ = 2.0, 38383 cells, CPU time = 82.0s; g.h. ¢ = 3.0, 48334
cells, CPU time = 147.6s, 1767 steps.
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Figure 4.34. Shock wave interaction with an oblique rectangle. a. experimental photo
obtained by holographic interferometry; b. numerical isopycnics obtained by the VAS2D
with the Euler solver.
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Figure 4.35. Validation of the Navier-Stokes solver. The theory of boundary layer states
that for a flat wall \/Tw— is 0.332. The numerical values along the flat wall are shown

u3/zRe

by circles. x is a distance mesured from the tip of the flat wall.

The flow speed behind the incident shock is very high, but the flow speed in the
boundary layer is much lower. When the reflected shock propagates in this non-
uniform flows, it goes faster in the boundary layer than in the internal region. A

complex configuration then appears as shown in Fig. 4.36.

By comparing with experimental photos obtained in the Shock Wave Research
Center, the agreement is however quite poor, most possibly due to the fact that
the effects of real gases are not taken into account. Actually for the gas behind the
incident shock wave the ratio of specific heats is far below 1.4. However, it agrees

well with other numerical computations.

4.7.6 Shock wave moving in a nozzle

Shock wave motion in a nozzle is demonstrated in this subsection. Shock wave
moving a nozzle is interested in some practical applications such as shock tunnel
operation. The initial grid for the computation is shown in Fig. 4.6. The nozzle is
14cm long. Fig. 4.37 draws time sequences of isopycnics at every 50us. Fig. 4.37a
is the instant when the incident shock wave arrives at the inlet of the nozzle. 50u
later, a part of the shock wave goes through the throat, and most is reflected by the
wall, as shown in Fig. 4.37b. With the elapse of time, the shock wave propagating
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Figure 4.36. Shock / boundary layer interaction, Ms = 5, T, = 298k; 6-level refinement,

CFL = 0.5, ay; = 1.4: a.b. 32502 cells, 18832 steps, t = 25us; c.d. 59205 cells, 25853
steps, ¢ = 50us.
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through the throat becomes weaker and weaker due to the expanding nozzle, and
a contact region is then formed behind it. The reflected shock wave is repeatedly
reflected in the upstream part of the nozzle, and forms a multi-reflection pattern.
These are observable in Fig. 4.37c. The multi-reflection shocks are attenuated by
the “leak” from the throat, they cannot sustain for a long time and finally disappear,

as shown in Fig. 4.37de.

Fig. 4.38 compares the experimental photo with the numerical results obtained
by the Euler and the Navier-Stokes solver. Both solvers resolve the primary waves
correctly. The main difference between two solvers is the secondary shock wave
in the expanding part of the nozzle. In the viscous solution, the secondary shock
wave interacts with the boundary layer and creates a separation bubble, as shown
in Fig. 4.38c, which is not observable in inviscid flows as shown in Fig. 4.38b. Com-
paring with the secondary shock in the photo, the Navier-Stokes solution is clearly
closer to the real gas flows. It suggests that the viscous effect in the nozzle flows is

an important factor.
4.8 Remarks on three-dimensional extension

It has been shown in the previous sections that the VAS2D is a general-purposed
vectorizable solver for two-dimensional applications. The solver consists of mesh
generation, flow solver, mesh adaptation and post-processing procedures. To extend
the solver to three dimensions, one needs to modify all procedures. The modifi-
cations are sometimes extremely complicated and difficult; time and work for con-
ducting all modifications are certainly beyond what one doctoral student can afford
in three years. This section will describe an efficient way to extend the VAS2D to

vectorizable adaptive solver for three dimensions (VAS3D).

Any control volume in the VAS3D is a hexahedron, which is the 3-D counter-
part of a quadrilateral. Automated hexahedral meshing is much more challenging
than quadrilateral meshing. Fortunately many efforts have recently been made on
hexahedral meshing (see, [5]). The post-processing of 3-D unstructured data may
be performed by the commercial softwares which are installed in the supercomputer
center of the Institute of Fluid Science. Therefore the key technique of the VAS3D

is the extension of the flow solver and mesh adaptation.
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Figure 4.37. Shock wave motion in a nozzle for My = 2.8. CFL = 0.7, e consists of
36591 cells.
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Figure 4.38. Shock wave motion in a nozzle for M; = 2.8: a. experimental photo
obtained by holographic interferometry; b.c. numerical isopycnics and the corresponding
grids obtained by the VAS2D. b is the result of the Euler solver, and ¢ the Navier-Stokes
solver.
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The extension of the flow solver requires changes of the gradient evaluation and
flux evaluation. The least square method discussed in Section 4.5.3 is actually
suitable for three dimensions as well as two dimensions. The kernel part of the
flux evaluation is the predictor step, which locally solves the two-dimensional Euler
equations, and it can be done similarly by using three-dimensional Euler equations.
The local gradient modification, which makes the stencil compact, has already been
written in the vector form in Section 4.5.4, and so it is able to be applied to three

dimensions without difficulty.

The extension of vectorizable mesh adaptation for a hexahedral grid is the most
difficult part, but key problems have been solved and briefly described in Chapter
3. For instance, data structure is the cell-face one, and to label six neighboring
cells follows the path which goes through all faces. The advantages of the cell-face
structure for hexahedral are similar as the cell-edge structure for quadrilaterals, such

as full vector processing, logic-free connectivity information for flow solver.
4.9 Summary

The smoothing Lax-Wendroff scheme, proposed in Chapter 2 has been applied to
arbitrarily quadrilaterals by the finite volume method. Extensive numerical tests
show that the scheme is indeed problem independent. The strengths of the approach
may be summarized as follows. First, it is more general. Because no Riemann solver
is involved in computation, the approach can be directly applied to the modeling of
other systems of conservation laws. Second, it is a truly multidimensional method.
The numerical flux is predicted by solving the multidimensional Euler equations

without one-dimensional assumption there.

An essentially vectorizable data structure, which is one special case of those dis-
cussed in Chapter 3, has been realized on arbitrarily adaptive quadrilaterals. The
data structure provides logic-free topological adjacency for the solver with negligi-
ble overheads. Its vectorization efficiency is comparable with that of a solver on

structured meshes.

In solving the Navier-Stokes equations, unlike the hybrid methods which com-
bines structured quadrilaterals around body with unstructured triangles outside, the

present adaptation method adopts uniformly unstructured quadrilaterals. It neatly
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generates a layer of body-fitted orthogonal mesh without losing generality, and it is

a real bonus that quadrilateral mesh generation is readily automated.
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Chapter 5

Experimental and numerical study
of shock wave focusing

5.1 Introduction

A shock wave the shape of which is concave to the direction of its propagation can
converge to a focal region and will produce locally a high pressure and temperature
there. This shock wave focusing has been applied to various scientific and engi-
neering applications. Guderley [1] was the first to derive the self-similar solution for
symmetrically converging cylindrical and spherical shock waves and showed that the
pressure at the center of convergence becomes infinite. Sturtevant and Kulkarney [2]
pointed out that, in the case of the focusing of a reflected shock wave from concave
wall, the ratio of the pressure amplification of a sonic wave is infinite at focal point.
It seems that the focusing of a concave converging shock wave is one of the most

effective ways in creating a high pressure and temperature.

Guderley’s theoretical work of the convergence of cylindrical shock waves has
been experimentally examined by Watanabe and Takayama [3]. Milton and Archer
[4] proposed the introduction of a duct having a logarithmic spiral configuration in
order to achieve the focusing of a planar shock wave. Milton [5] reviewed the focus-
ing of a planar shock wave in shock tubes. Very high pressures and temperatures,
however, have never been obtained by the focusing of a planar shock wave reflected
from concave walls. Sturtevant and Kulkarny [2], based on shadowgraph obser-

vation of the reflected shock wave focusing, conjectured that diffracted expansion
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waves created from the edge of the concave reflector corners overtake the converging
shock wave and hence reduce the pressure amplification at the focal point. Geomet-
rical shock dynamics explains, in the other hand, that nonlinear effects will make
the shape of a shock wave flat so that the peak pressure is somewhat restricted.
This is a multi-dimensional effect of shock wave focusing, which is deviated from a

symmetrical convergence of shock waves as discussed by Guderley [1].

Milton [5] found that, in the real procedure of planar shock wave focusing along
the logarithmic spiral duct, the triple point appeared at the final stage of the focus-
ing. This implies that the nonlinear character of focusing shock wave is dominating
at the final stage. Watanabe and Takayama [3] investigated the stability of converg-
ing cylindrical shock waves and found that the small initial irregularity in the shape
of a shock wave developed eventually creating Mach reflections which accompanied
triple points and vortices and smaller the mode number of shock wave irregularities
is, more significant the final distortion of the shock wave is. These observations
indicate that the contribution of the nonlinear evolution of a shock wave plays an

intriguing role in the shock wave focusing.

In the earlier holographic interferometric study of shock wave focusing from a
circular concave wall (Takayama and Ben-Dor [6]), it is revealed that the shock wave
focusing is strongly affected by the transition of the shock wave reflection from Mach
to inverse Mach reflection over the curved wall and by the motion of the resulting
triple points. Izumi and Nishida [7] also observed this phenomenon over parabolic
shaped reflectors. In general, the detailed understanding of the effect of shock
wave reflection on the formation of focusing is, unfortunately, not yet completed

experimentally and numerically.

The present study explores the final stage of the shock wave focusing inside a
reflector, which has a similar circular reflector as that used by Takayama and Ben-
Dor [6], connected to a diaphragmless shock tube of 60 mm in height and 150 mm
in width. Observations were carried out mostly by double exposure holographic
interferometry. Attention was focused on the motion of the triple points which were

created by the termination of the inverse Mach reflections.

It was found that, for building up the high pressure and temperature at the

focal point, the collision of the two triple points which were created by the inverse
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Mach reflection and developed with propagation along the curved wall has a more
dominating effect than the convergence of the curved reflected shock wave which
is predicted by acoustics or geometrical shock dynamics. The triple points always
collide with each other before the curved shock wave coalesces into the geometrical
focal point. The result of the quantitative analysis of these interferograms confirmed
that the peak density was a maximum immediately after the time instant of the shock
wave focusing and the location in which the peak density appeared was slightly
deviated from the geometrical focus. This trend was also verified by a finite volume

numerical simulation using adaptive unstructured grids.

5.2 Experiment and computation

5.2.1 Experimental setup

Experiments were conducted using a 60 mm x 150 mm diaphragmless shock tube
in the Shock Wave Research Center, Institute of Fluid Science, Tohoku University
(Yang and Takayama, [8]). Fig. 5.1 shows the shock tube consisting of a driven
channel of 60 mm x 150 mm, and a driver chamber of 290 mm i.d. and 2 m in
length. Upon the quick movement of a rubber membrane that seals a driver chamber
and a driven channel, shock waves were readily generated in the driven channel.
The movement of the rubber membrane could be controlled so accurately that the
generated shock waves became very repeatable under identical initial conditions.
Therefore, the scatter of shock wave Mach numbers was found to be within +0.25%
for more than 500 runs (Yang and Takayama [8]). This repeatability enabled to
record shock wave configurations at the focal point sequentially and much more
accurately. The diaphragmless shock tube allowed very repeatable observations of
the flow field near the focal point at every 10, 20 or 25 microsecond time interval
for incident shock Mach numbers M, = 1.03, 1.09, 1.28, 1.50, and 1.74 in Nitrogen.

Fig. 5.2 shows the geometry of the test section, which had a circular shape of
387 mm i.d. and 150 mm in width, and was connected to the shock tube. The
observation windows were made from an acrylic plate of approximately 40 mm in
thickness. Due to double exposure holographic interferometric observation, thick
plastic glass windows were still acceptable for quantitative observation of density.
For creating weak shock waves of M, = 1.03 and 1.09, the initial pressure in the

driver channel was adjusted slightly higher than atmospheric pressure, since the
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Figure 5.1. Experimental setup and optical arrangement

possible resolution of interferometric fringes is proportional to the initial pressure
or density. This enhancement of the initial pressure was only limited because of
the large diameter of the plastic windows. On the other hand, in order to create
very weak shock wave but with possibly larger density jump across them, it is
advantageous to keep the ratio of pressures between the driver chamber and driven
channel closer to unity, but to make their difference large. Room temperature is at
about 25 £2°C during all experiments. Most experimental results were summarized
in [9], and only the results of M, = 1.5 are discussed and compared with numerical

results in this chapter.

Fig. 5.1 also shows the schematic diagram of double exposure holographic inter-
ferometric arrangement. Paraboloidal schlieren mirrors of 500 mm dia. and 5 m
focal length was used to collimate the object beam so that this optical arrangement
is similar to a conventional shadowgraph optic except that the reference light beam
was added to it. A double pulse ruby laser (Apollo Laser Inc. 22DH, 25 ns pulse
duration and 2 J/pulse) was used as light source. The light path length of the test
section was 150 mm so that the sensitivity is increased by a factor 2.5 to the test

section of a shock tube with the light path length of 60 mm (Yang and Takayama
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Figure 5.2. A 150 mm wide circular reflector connected to the 60 mm x 150 mm shock
tube

[8]). The object and reference beams were superimposed on a 100 mm x 125 mm
sheet film (Agfa Gevaert 10E75). Holograms were reconstructed by an Argon-Ion
laser (wavelength A = 514.5 nm and 1 W). The distortion of images between the

experiment and reconstruction was negligibly small.

5.2.2 Numerical methods

At the final stage of shock wave focusing, shock waves and slip lines change their
configurations not only in very short time duration but also in a very confined fo-
cal region. Therefore, for simulating these shock wave interactions, a sophisticated
numerical scheme is needed to achieve such high spatial and temporal resolutions.
Although it is very straightforward distributing fine meshes everywhere in the com-

putational zone, this can not be very efficient.

The Euler equations were numerically solved on an adaptive quadrilateral grid
by the VAS2D, which uses the Lax-Wendroff scheme with a smoothing flux and
efficiently removes numerical oscillations (see Chapter 2 for details). The initial
quadrilateral grid is shown in Fig. 5.3. Only half of the test section is calcualted
because of symmetry. Another code is also chosen in this study for comparison. The
code uses a triangular grid, which was originally constructed by Voinovich (1993).
The scheme is a second-order Godunov-type one using a TVD limiter and the exact

Riemann solver.

146



Figure 5.3. The initial quadrilateral grid for the VAS2D.

5.2.3 Quantitative image data analyses of interferograms

The shock wave focusing in a shock tube was usually visualized by using shadow-
graph or schlieren method and the pressure at the focal regions were well measured
(Sturtevant and Kulkarny [2]). However, precise sequential optical flow visualiza-
tions were found to be difficult so far in a conventional shock tube. On the other
hand, pressure measurements can provide only the flow information at individual
spots. In addition to this, the pressure transducers fail, due to their finite size, to
respond a very steep pressure rise at a shock wave. Therefore, the time variation of

pressures at a very narrow focal region has never be resolved properly.

Holographic interferometry can measure quantitatively and non-invasively high-
speed flows. In two-dimensional flows and if the real gas effect is neglected, the
fringes on interferograms correspond to isopycnics so that this technique is useful
to determine the structure of the focusing shock wave. However, it is not straight-
forward to evaluate the density jump at the shock waves, because fringes there are
so densely packed, sometimes beyond the limit of photographic resolution, that the
collimated object beam was often refracted and the image of the fringes at the shock
wave appear to be blurred or even gray. There is no difficulty in resolving fringe
spacing in a region where densities vary continuously. A possible way of evaluat-
ing the density jump at the shock wave is to adopt the result of reliable numerical

simulations.

Sun and Takayama [10] tried to combine the quantitative density distribution
estimated by simply counting fringes on interferograms with a numerical result.
The comparison between an interferogram and its corresponding numerical result
of the present adaptive unstructured Eulerian solver is shown in Fig. 5.4. The
interferogram was taken for M = 1.5024+0.002 at ¢ = 1114+ 8 us where the elapsed

147



time ¢t was measured from when the incident shock wave entered the test section. The
scatter of the elapse of time was due to a slightly inaccurate measurement the time
instant when a shock wave exactly entered the test section. This was attributable

to the finite size of the pressure transducers.

At the time instant when the shock wave focusing occurs, four shock waves
and two slipstreams intersect simultaneously at one point x = 0.786, where z is a
dimensionless distance normalized by the reflector diameter so that the center of
the reflector is at x = 0.5. These complex wave patterns are identified exactly by
corresponding numerical results. As seen in Fig. 5.4b, the same wave pattern is
observable in the numerical simulation at t = 1113 us and z = 0.782. The upper
half of Fig. 5.4b shows the isopycnics and lower half does the corresponding grid
for My = 1.50. No compensation was sought for the possible phase shift between
the isopycnics and the fringes on the interferogram. The observable discrepancies of
fringes are estimated to be less than those created during measurements. The spatial
and temporal agreement of fringes between the interferogram and the numerical
result reveals that the VAS2D result is accurate enough to describe not only the
shape of shock waves but also their strength. It must be emphasized, although
it is not a main topic of the present study, that the interaction between vortexes
generated from the entrance of the reflector and the secondary shock wave is very

sharply resolved.

Taking into account this agreement, the quantitative interpretation of interfero-
grams can be done readily by using these numerical results. The value of the density
jump at the shock waves is given numerically, and hence the density in other parts
are measured simply by counting the fringe number on the interferogram since the
jump of the fringe number on the interferogram has a known value (see [9]). The
density distribution along the centerline is later summarized in Fig. 5.8b. Very good
agreement is obtained over the entire flow field except the flow region which is likely
to be affected by the real gas effect. This quantitative analysis is successfully applied

to the density measurement near the focal region for My = 1.5.
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Figure 5.4. Comparison between an interferogram and the corresponding numerical
results of the VAS2D: (a) interferogram for M = 1.502 £0.002 and at ¢ = 1114+8us; and
(b) numerical isopycnics (upper half) and the corresponding adaptive grid (lower half) for
My =15 and at t = 1113 us.
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5.3 Formation of reflected shock wave

A planar shock wave is gradually curved if propagating in a non-uniform medium
or moving along a non-uniform boundary. The non-uniformity simply means the
inhomogeneity of the medium such as a medium having a temperature gradient
or a stratified layer. If a cylindrical shock wave converges toward its center of
convergence, it is gradually perturbed with propagation, although it appears to be
cylindrical and has apparently no disturbances behind it. Watanabe and Takayama
[3] experimentally proved that these initial perturbations developed to form the
irregularity of the shape of the shock wave, which eventually became Mach reflection
while moving very close to the center of convergence. Evidently, the shape of curved
reflected shock wave is a dominating factor in shock wave focusing. This section
describes, therefore, the process of the deformation of curved shock waves from the

circular reflector.

The formation of a curved shock wave which was discharged from an inlet to
the circular reflector is shown in Fig. 5.5 for M; = 1.5 in air. The initially planar
shock wave diffracts at the exit of the shock tubes, resulting in a curved shock wave,
the foot of which is perpendicular to the wall as seen in Fig. 5.5a. The foot of
this curved shock wave tends to lean forward with its propagation and eventually
becomes Mach reflection. With further propagation of the shock wave, as seen in
Fig. 5.5b, the Mach reflection transits to the regular reflection. The triple point
of the Mach reflection is succeeded by a second triple point on the reflected shock
wave of the regular reflection. The transition was well documented as that from the
direct Mach reflection to the inverse Mach reflection by Courant and Friedrichs [11]
and was well demonstrated by Takayama and Ben-Dor [6]. A full developed regular

reflection is shown in Fig. 5.5c.

The second triple point consists of three shock waves and a slip line which suc-
cessively develops to a vortex on the wall. The planar incident shock wave reflects
from the curved wall resulting in a reflected shock wave which is concave toward
the direction of its propagation. Simultaneously the normal shock wave and the slip
line grow with the elapse of time. These waves are clearly shown in Fig. 5.5d. It is,

therefore, this wave system that contributes to the shock wave focusing.

The process of the formation of a curved reflected shock waves is observed for
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other shock wave Mach numbers and the trend of the process is similar to other M.
The same conclusion was derived experimentally by Takayama and Ben-Gor [6] and
also by Izumi and Nishida [7] who tested with paraboloidal reflectors. The present
observation as seen in Fig. 5.5 and also previous observations showed that the curved
reflected shock wave bounded by the two triple points which were created along the
upper and lower walls and were moving toward the center line. When the curved
reflected shock wave coalesced at the centerline, the triple points simultaneously

merge.

Counting the contour numbers in Fig. 5.5d, the density behind the triple points
is found to be higher than that behind reflected shock wave. The higher density is
maintained until these two triple points collide with each other. For stronger shock
waves, it will be shown that the highest density that occurs immediately after the
collision at the focal point can be estimated from the value of the density behind
the triple points. The formation procedure of reflected shock wave agrees very well

with experimental observations [9].
5.4 Shock wave focusing and collision of triple points

Sequential interferograms and numerical results, particularly enlarged view of the
focal point, are shown in Fig. 5.6 for M; = 1.50. Over a concave wall, the transition
of the pattern of a reflected shock wave from a direct Mach reflection to an inverse
Mach reflection takes place. The two reflection points of these resulting regular
reflections which consist of the regular reflection and a triple point on its reflected

shock wave merge forming a concave shaped reflected shock wave.

Fig. 5.6a shows the interferogram at -25 ps from the moment of the shock wave
focusing. The triple points move toward the centerline. The normal shock waves at
the second triple points were gradually curved with their propagation and crossed.
The triple points collided each other in Fig. 5.6¢c completing the shock wave focusing.
At 10 ps after the focusing, the slip lines coalesced, resulting in a very steep increase
of density at the focal point. The curved slip line merged and appeared to be a loop
in Fig. 5.6e. The curved shock waves crossed each other forming another three shock
wave confluence. Numerical results shown in Fig. 5.6bdf exactly reproduce the shock

wave configurations during focusing.
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C.

Figure 5.5. Sequential numerical isopycnics and adaptive grids of shock wave propagation
in the circular reflector for M;=1.5.

152



e. . st
Figure 5.6. Shock wave focusing for My = 1.50, Py = 26.7 kPa: a.b. -25 us; c.d. 0

us; ef. 25 pus : a.c.e. are experimental interferomgrams, and b.d.f. are isopycnics and
corresponding adaptive grids obained by the VAS2D
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Figure 5.7. Sketch of the shock wave system in Fig. 5.6ae, corresponding to Fig. 5.7a
and b respectively.

Fig. 5.7 illustrates the renaming the shock wave system in the vicinity of the focal
point: the sketches of Fig. 5.6ae are illustrated in Fig. 5.7a and b respectively. At
the triple point in Fig. 5.7a, the incident shock wave, the reflected shock wave, the
Mach stem, and the slip line are defined so far according to the understanding of the
shock wave dynamics. However, as the slip line already overtook the curved shock
wave in Fig. 5.7b, the incident shock wave in Fig. 5.7b is replaced by the Mach stem
in Fig. 5.7a and the Mach stem in Fig. 5.7b is also replaced by the incident shock
wave in Fig. 5.7a. The reflected shock wave and the slip line remain unchanged.
Eventually the shape of these wave systems appear to be a loop shape as seen in
Fig. 5.6e. The reflected compression waves from the curved boundary coalesced into
a shock wave eventually forming the reflected shock wave. This coalescence of fringes
into a reflected shock wave is clearly observable in Fig. 5.6. The loop shaped shock
wave interacted at first with these reflected waves, which are now renamed as Mach
stem, and generated triple points. However, with propagation, these reflected shock
waves no longer remain as shock waves but become compression waves. Hence, the

triple points vanish and the loop shaped shock wave becomes smoothly rounded.
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The density enhancement behind converging shock waves is confirmed in exper-
iment. Only one or two fringes are found to be different from the instant —50us
to —25us. A quantitative measurement shows that the fringe number difference is
about 16 immediately after focusing for M; = 1.5. The focusing of a curved shock
wave never increases the fringe number. Detailed experiment indicates that the
fringe number is increased due to the interaction of the Mach stems. The fringes
are densely packet immediately after the interaction of the Mach stem. The high
density region moves toward the point at which the reflected shock waves merge as

shown in Fig. 5.6¢.

Fringe numbers on the interferograms in Fig. 5.6ace are counted along the cen-
terline. The comparison with these experimental results with numerical results is
shown in Fig. 5.8ab, and Fig. 5.9c: open squares denote the experimental data;
and solid and dashed lines denote the numerical results of two different methods.
Since the fringes behind the loop shaped shock wave is so densely concentrated that
the corresponding density gradient deteriorates the resolution of the fringe spacing.
The peak density seen in Fig. 5.9¢, therefore, should be obtained by the extrapola-
tion. Good agreement is obtained between experiments and numerical results. The
density increase of approximately 50% at 25 ps is observed between Fig. 5.8a and
Fig. 5.8b. The interaction of these two incident shock waves further increase of the
peak density as shown in Fig. 5.9c. The density increase is more clearly shown in

Fig. 5.9d by plotting three density distributions together.

It is seen that in three quantitative comparisons with experiments, the numerical
results obtained by the VAS2D agree well with these by the Godunov-type upwind
scheme. This suggests that the VAS2D can provide numerical results for complex

shocked flows as accurate as the upwind scheme.

Mach stems and slip lines are observable in Fig. 5.6e. The shape of the reflected
shock wave after the collision of triple points is almost self-similar. This, based on
the wave pattern at the focal point, makes it possible to estimate the highest density
near the focal region. Hence, the shock wave system in Fig. 5.6¢ is equivalent to the
shock wave reflecting over a wedge with inclination angle of 35°. The density ratio
normalized by the initial density is 1.42 in front of the reverse moving shock wave.

This value is obtained by the VAS2D. The fringe jump corresponding to the density
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corresponding to Fig. 5.6a; b. ¢ = 0, corresponding to Fig. 5.6b.
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Table 5.1. Estimation of triple point trajectory and highest pressure and density after
the collision of the triple point by the geometrical shock dynamics theory

theory interferogram CFD

Y b.I° 5°
Prae  6.31 6.1
Pz 34T 3.3

jump across the incident shock waves is 16, and 1.73 in terms of the density ratio,
which was obtained by counting fringes on the interferogram. Thus the incident

shock wave Mach number M is eventually determined to be 1.425.

In the case of the reflection of a shock wave of M, = 1.425 over a wedge of inclina-
tion angle of 35°; the reflection pattern is Mach reflection and its physical quantities
are tabulated in Table 5.1. The triple point trajectory was solved by geometrical
shock wave dynamic theory [12]. The theory can well predict experimental results.
Quantitative agreement of these quantities indicates that higher density or pressure

is mainly caused by the interaction of shock waves.

The collision of the shock wave is assumed to be the same as the termination
of a triple point that occurs in the inverse Mach reflection. Let call the regular re-
flection which appears when the inverse Mach reflection terminates as a transitional
regular reflection (TRR) consisting basically of RR followed by MR (see Ben-Dor
and Takayama [13]). Then the wave configuration that appears after the collision is
regarded as TRR. The RR which was first mentioned by Sturtevant and Kulkarny
[2] is indeed TRR. The wave configuration that appears in the present experiment
after the collision of triple points is MR. This Mach reflection appears when the
inverse Mach reflection InMR terminates so that this may be called a transitional
Mach reflection, TrMR. The shape of the transition to RR or MR after the shock
wave focusing belongs to either TRR or TrMR.

5.5 Summary

Widening the width of the test section of the diaphragmless shock tube very reliable
interferograms were obtained with a high degree of repeatability. The adaptive
unstructured grid numerical simulation was conducted in order to interpret the

interferograms quantitatively. The results obtained are summarized as follows:
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. Apparent shock wave focusing is created by the collision of triple points. How-
ever, the peak density appears at the time instant after the triple points merge

at the center line.

. The process of focusing of reflected shock waves from circular concave wall is
governed by the entire process of shock wave systems moving over the circular

concave wall.

. The numerical results obtained by the VAS2D on unstructured quadrilateral
grids agree very well with the present finite fringe interferograms. The image
data processing partially supported by the numerical simulation has been suc-
cessfully applied to the shock tube experiment, in which very delicate shock

wave interactions were well resolved.

. A transitional Mach reflection may appear after the termination of an inverse
Mach reflection as well as a transitional regular reflection. The patterns of
shock waves after focusing correspond to the transitional regular reflection

and the transitional Mach reflection.
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Chapter 6

Conclusions

The highlights of the thesis are summarized here:

e The flow solver is a novel central difference scheme, which is the Lax-Wendroff
scheme with conservative smoothing. Extensive numerical tests show that
the scheme is independent of flow conditions. The strengths of the approach
may be summarized as follows. First, it results in a compact computational
stencil, which consists of three nodes in each dimension. Second, it is a truly
multidimensional method. The numerical flux is predicted by solving the
multidimensional Euler equations without any one-dimensional assumption
there. Finally it does not involve the Riemann solver in the flux evaluation,

so that it can be directly applied to other systems of conservation laws.

e An essentially vectorizable data structure is designed and has been applied
to arbitrarily adaptive quadrilaterals. The data structure provides logic-free
topological adjacencies for the solver with negligible overheads. It makes not
only the flow solver but also mesh adaptation easily vectorized. The efficiency

of vector processing is comparable with that of a structured solver.

e In solving the Navier-Stokes equations, unlike the hybrid methods which com-
bine structured quadrilaterals around body with unstructured triangles out-
side, the present unstructured adaptation method adopts uniformly unstruc-
tured quadrilaterals. It neatly generates a layer of body-fitted orthogonal mesh
by repeatedly refining the cells in the boundary layer. It is a real bonus that
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quadrilateral mesh generation is readily automated.

e The image data processing partially supported by the numerical simulation has
been successfully applied to the shock tube experiment, in which very delicate
shock wave interactions are well resolved. The numerical results obtained by
the vectorizable adaptive solver on unstructured quadrilateral grids agree very

well with the experimental finite fringe interferograms.
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