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Abstract 

Today, much attention is devoted to unsteady flow problem such as flutter, for which flutter 

analysis with numerical simulation is useful in predicting conditions under which flutter occurs. To 

compute such a problem, this study specifically examines Moving Grid Finite Volume Method 

(FVM). Unsteady flow calculation code was constructed based on Moving Grid FVM. Then, the 

flow the field around an ONERA M6 wing was computed, which is a steady problem. 

Computational results show good agreement with experimental values on the undersurface of the 

wing. However, some gaps occurred between them near the shock above the wing. Lastly, a pitching 

problem of the NACA 0012 wing, which is an unsteady problem, was computed. The trend of 

computational results agrees with the experimental one. However, some gaps between these are 

apparent. Viscosity must be considered for accurate computation. Future work will include 

consideration of Navier–Stokes equations, performance of flutter simulation, and application of an 

unstructured grid to calculate the flow field around complicated objects. 

 

1. Introduction 

 1.1 Development of Airplane and flutter 

 In airplane development, unsteady flow problems such as flutter that the unsteady nature 

has an extremely important sense have attracted attention. Flutter is a representative example of an 

aeroelastic phenomenon that occurs by an aerodynamic force and elastic force. A steady 

aerodynamic force, an elastic restoring force and unsteady aerodynamic force which depends on 

structural deformation work on a wing when a flight condition surpasses the flutter boundary. 

Divergence vibration of a wing by the force is called as flutter. Especially during high-speed flight, it 

might cause wing destruction by aerodynamic forces which amplify the vibration. Therefore flutter 

is a very important phenomenon in airplane design. Presently, various novel ideas including the use 

of composite materials such as carbon fiber reinforced plastic (CFRP) for airplanes are being 

explored to shorten flight times and to improve fuel efficiency. However, flutter characteristic 

degrades by stiffness decrease when weight saving of airplanes is performed. Therefore, it is 

necessary to predict the flutter boundary and avert the condition where flutter occurs for the safe 

design and operation of an airplane. To do this, an accurate prediction of the flutter boundary which 

used numerical calculation is expected. 

 1.2 Flutter analysis 

 It is necessary to combine Computational Fluid Dynamics (CFD) and structural calculation 

when flutter is reproduced with numerical simulation. In flutter analysis, a pressure distribution 

obtained by CFD is provided to structural calculation. Structural calculation is done with the 



distribution and displacement of a wing surface is computed. After spatial grid is deformed based on 

the displacement, CFD is performed. Fluid-Structure Interaction (FSI) calculation is done by 

repeating this cycle. Here, it is necessary to devote attention to discretization of the governing 

equations, evaluation of metrics, and so on in CFD because the grid moves in response to the 

translation and the deformation of a wing. The conservation law of the flow is not satisfied and the 

numerical calculation is not done accurately if the discretization and evaluation are made without 

careful consideration. To resolve this problem, the geometry conservation law (GCL) must be 

fulfilled, coupled with the conservation law of flow. In the conventional method [1], the GCL is 

discretized and solved in common with fluid conservation law. However, it is impossible to lead the 

error of metrics to zero in this method. Therefore, the Moving Grid Finite Volume Method (FVM) 

[2] is examined specifically, in which the control volume is extended in time and space. By applying 

this method, the GCL is absolutely satisfied. 

 1.3 Objective 

 The objective of this work is to construct an unsteady flow calculation code and perform 

flutter analysis. First, Moving Grid FVM is formulated. Secondly, the flow field around an ONERA 

M6 wing, which is a steady problem, is computed. Lastly, the pitching problem of the NACA 0012 

wing, which is an unsteady problem, is computed. When these calculations are completed, the 

structured grid is used. 

 

2. Numerical Calculation Methods 

 2.1 Moving Grid FVM 

 For ease of calculation, Euler equations are solved and viscosity is ignored. As stated in 

the Introduction, three-dimensional Euler equations are integrated in time and space based on 

Moving Grid FVM. Then the following are derived: 
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The Ω shows the control volume on time and space, with Q, E, F, and G shown as follows. 
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After applying the divergence theorem of Gauss to the upper equations, the equations below are 

derived. 
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Figure 1 presents a schematic of Moving Grid FVM. Black lines are at the n step, red lines are at the 



n+1 step, and blue dashed lines are the locus of grid points. k=1–6 shows a hexahedral element 

shaped by a face at the n step and a face at the n+1 step. k=7 shows a hexahedral element formed by 

black lines at the n step. k=8 shows a hexahedral element that consists of red lines at the n+1 step. 

Here, the superscript shows the time step; 𝑛! , 𝑛! , 𝑛!  and  𝑛! are components of a normal vector 

about a hexahedral element at k. Therefore, quantities at the 𝑛 + !
!
 step are evaluated on the average 

of quantities at the n step and at the n+1 step. By taking an average in this way, the time accuracy 

becomes second accuracy. In this method, these equations are an implicit form. Then, E, F and G are 

linearized and useful equations are obtained as shown below. 
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There, A, B, and C show the Jacobian of E, F and G;   ∆𝐐! is equal to 𝐐!!! − 𝐐!. The upper 

equations are formulated using Moving Grid FVM. 

 

Fig. 1 Schematic of Moving Grid FVM. 

 2.2 Inner Iteration Method 

 To calculate unsteady flow problems, it is necessary to devote attention to time accuracy. 

If the equations described previously are solved as they are, then the temporal accuracy decreases 

because of the error of linearization, diagonalization, and approximate factorization. Therefore, the 

inner iteration method, designated as the delta form, is introduced into the equations to maintain 

temporal precision. The delta form is represented as 

𝐐!!! = 𝐐(!) + ∆𝐐(!). 



Superscript m denotes the number of inner iterations. The equations to which delta form is applied 

are the following. 
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When ∆𝐐(!) on the left side of the equation converges to zero, the right-hand side becomes equal 

to zero and coincides with equation (1). That is to say, despite the numerical error which occurs by 

the inversion of matrix in left side of the equations and the linearization, time accuracy maintains 

second accuracy. These equations are solved in this work eventually. In this calculation, m times 

between the n step and the n+1 step are calculated until ∆𝐐(!) converges to some degree. 

 2.3 Discretization 

 The governing equations are three-dimensional Euler equations. The governing equations 

are discretized using Moving Grid FVM. Precision in space is second accuracy using the MUSCL 

approach. The convective numerical flux is calculated using SLAU and Roe upwind scheme. In time 

integration, the matrix-free LU-SGS implicit scheme is used with inner iteration method. 

 

3. Steady problem 

 Before calculation of an unsteady problem, the code which is constructed based on 

Moving Grid FVM is validated by computing a steady problem. Calculation of the flow field around 

an ONERA M6 wing is done. In this calculation, the convective numerical flux is calculated using 

the SLAU upwind scheme. Figure 2 portrays the computational grid near the wing. A C–H type grid 

is created around the wing. The grid comprises 197 cells around the wing, 50 cells in a direction 

normal to the wing, and 82 cells in a spanwise direction. The computational domain is extended to 

30 root chord lengths in a direction vertical to the wing. The smallest cell width is 5 × 10-3 root 

chord lengths. In flow conditions, the Mach number is 0.84 and the angle of attack is 3.06 deg. 

Figure 3(a) shows the pressure coefficient contours around the wing. The lambda shock, which is a 

feature of the ONERA M6 wing, can be confirmed. Figure 3(b) shows the pressure coefficient 

distribution of the wing section in 65 percent of semi span. As the figure shows, the computational 

results on the undersurface of the wing are well in agreement with experiment values. However, 

there is the difference near the shock wave on the upper surface of the wing. This results from 

inviscid calculation. 



 
Fig. 2 Computational grid near the ONERA M6 wing. 

 

Fig. 3(a) Pressure coefficient contours of ONERA M6 wing and (b) pressure coefficient distribution 

of the wing section at a 65 semi span. 

 

4. Unsteady problem 

 The pitching problem of NACA 0012 wing is then computed. In this calculation, the 

convective numerical flux is calculated using the Roe upwind scheme. Figure 4 shows the 

computational grid near the wing. This wing is an NACA 0012 airfoil extended in a z direction. This 

grid comprises 202 cells around the wing, 40 cells in a direction normal to the wing, and 10 cells in a 

z direction. The computational domain is extended 40 root chord lengths in a direction vertical to the 

wing. The smallest cell width is 10-3 root chord lengths. In this calculation, the pitching vibration is 

performed to the wing. The computational conditions accord with those from the experiment 

reported by Landon. The Mach number is 0.755. In vibration conditions, the mean angle of attack is 



0.016 deg, the pitching amplitude is 2.51 deg, and the reduced frequency is 0.0814. The reduced 

frequency k is expressed as follows. 
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In that equation, 𝜔 signifies frequency, c denotes chord length, and 𝑉∞ represents the free stream 

velocity. Figure 5 shows the normal force coefficient distribution corresponding to the angle of 

attack. The red line shows computational results. The green points represent experimental values. 

The center point of this figure is a start point of vibration. Computational results draw the hysteresis 

loop with a pitching vibration. The trend of computational results agrees with this experimental one. 

However, the difference between computational results and experimental values arises, which results 

from ignoring viscosity. Therefore, for accurate computation, it is necessary to consider viscosity, 

which demands the use of Navier–Stokes equations. 

 

Fig. 4 Computational grid near NACA 0012 wing. 



 
Fig. 5 Normal force coefficient distribution. 

 

5. Conclusion 

 An unsteady flow calculation code is computed using Moving Grid FVM. First, Moving 

Grid FVM was formulated. Secondly, the flow field around ONERA M6 wing was computed. The 

computational results on the undersurface of the wing show good agreement with experimental 

values. However, there is the difference on the upper surface of the wing. Finally, the pitching 

problem of NACA 0012 wing was computed. The trend of computational results agrees with that of 

the experimental results. However, some gaps occurred between them. Viscosity must be considered 

to conduct computations accurately. As future works, Navier–Stokes equations will be considered, 

flutter simulations will be performed, and an unstructured grid will be applied to calculate the flow 

field around complicated objects. 
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