Tohoku University's Electric Car for Student Formula Japan

ERSI

Agenda

- 1. Background
- 2. Objective
- 3. Direction of Design
- 4. Chassis
- 5. Drivetrain
- 6. Comparison with Competitor
- 7. Summary

Shigenori HASHIDA Aerospace Engineering,

Tohoku University

1. Background

Student Formula Japan

http://www.jsae.or.jp/formula/jp/

http://www.sist.ac.jp/

A student design competition Design, build and test a car on our own Evaluation : Performance, marketing, planning, design, manufacturing, cost ...

- Organizer: SAE of Japan
- Sponsor : Toyota, Nissan, Honda ...
- The number of teams: 8 (EV class in 2013)

1. Background

Outline of Events

http://blog.livedoor.jp/jsaeformula/

http://www.daido-news.jp/

Events (Points)

- Static : Cost (100)
 Presentation (75)
 Design (150)
- Dynamic: Acceleration (75)
 Skidpad (50)
 Autocross (150)
 Endurance (300)
 Fuel Economy (100)

2. Objective

To **win the total performance award** at EV class of Student Formula Japan in 2013, we plan, design & build an EV car

http://www.jsae.or.jp/formula/jp/

3. Direction of Design

http://www.sist.ac.jp/club/f-sae/

Merits of EV

- The battery near the center of the car
- ✓ Good weight balance & mass concentration
- The electric motor does not need big space
 The driving position close to C.G.

Rival Car: The frame designed for CV x Full advantage of electrification

Designing a car tailored for the electric powertrain, excellent dynamic performance will be gained

4. Chassis

Displacement analysis on 1G turn

Human-Centricity

- High stiffness
- Ergonomic driving position
- Controllability
- Short overhang & wheelbase
- Quick handling

Easy Manufacturing

- Steel pipe space frame
- Cost, workability, repairability
- Reduction of the number of welded point
- ✓ Cost & accuracy

5. Drivetrain

Human-Centricity

- Abolishment of multispeed gearbox
- ✓ Easy driving
- 50:50 front/rear weight balance
- Controllability
- Mass concentration
- ✓ Quick handling

Easy Manufacturing

- Chain drive
- Cost, adjustability, robustness

6. Comparison with Competitor

TF13

Specification (Not Firm)

Frame	Steel	
Bodywork	GFRP	
Overall Length	2,300 mm	
Wheelbase	1,530 mm	
Track	Front: 1,175 mm	
	Rear : 1,175 mm	
Height	1,050 mm	
Ground Clearance	37.5 mm	
Wheel	13 inch	
Weight	240 kg	
Weight Dist.	50 : 50	
Rated Power	12 kW	
Max. Power	30 kW	
Battery	Li-ion, 6 kWh, 96 V	
Suspension	Front: Pushrod	
	Rear : Pushrod	

The Rival Car (2011)

http://www.kumikomi.net/ Specification (2012)

Frame	Steel	
Bodywork	CFRP	
Overall Length	2,815 mm	
Wheelbase	1,600 mm	
Track	Front: 1,150 mm	
	Rear : 1,150 mm	
Height	1,074 mm	
Ground Clearance	36 mm	
Wheel	13 inch	
Weight	270 kg	
Weight Dist.	30:70	
Rated Power	15 kW	
Max. Power	37 kW	
Battery	Li-ion, 380 V	
Suspension	Front: Pushrod	
	Rear : Pullrod	

7. Summary

- Our objective is to win the total performance award at EV class of Student Formula Japan in 2013
- To achieve it, we are designing a student formula car putting the first priority on human-centricity
- As it is the first time for us to entry the events, we also think much of manufacturability

8. Outline of Events

Static Events	Cost	The validity/competitiveness of cost calculation are examined. (100P)
	Design	Appropriateness, the reformation, the processability, and the repair, etc. of the design are examined. (150P)
	Presentation	The presentation technology for the manufacturing sales is examined. (75P)
Dynamic Events	Acceleration	The acceleration performance from 0 to 75m . (75P)
	Skid-pad	The vehicle's cornering performance is evaluated in steady state turns over a figure-of-eight course.(50P)
	Autocross	Vehicles are driven over an approximately 800 m course comprised of a combination of straights, turns, and slaloms. (150P)
	Endurance	Vehicles are driven over an approximately 20 km course comprised of a combination of straights, turns, and slaloms.(300P)
	Fuel economy	Fuel economy is evaluated in terms of the amount of fuel consumed in the endurance .(100P)

9. Work Environment

- Funding
 - \$ 53,000 (from club budget, Univ. and Co.) x Enough money
- Design
 - 2D CAD: Jw_cad, 3D CAD: SolidWorks2010
- Manufacturing
 - Tools, welder (manual, semiautomatic), etc.
 - x The surface plate
 - ->Made a small surface plate by steel scrap

We need to use these **extremely limited** resources much effectively

Roadmap

Important performance in future race : Energy Efficiency
EV as race car attracts attention
Problem : Mass of Battery

Improvement of energy efficiency is needed

Objective : Reduction of mass of battery by improving energy efficiency Target : **0.1kWh/km** (Champion in 2012 : 0.13kWh/km) Approach : Lightening & Control

2013 : Vehicle development, data acquisition, problem finding

- 2014 : Approach finding, computation & experiment
- 2015 : Test run, use in actual competition

TF13

: Vehicle development, Data acquisition, Problem finding 2013 Development : Controllability, Quick handling, Manufacturability (1) Frame ...Less welded points (Max. error without jig : 5 mm) Small inertia moment, Good weight balance (50 : 50) High stiffness (Toe variation on 1 G turn : 0.001°) Available GFRP cowl ⁽²⁾Suspension...Simple structure & geometry easy to make & adjust ③Drivetrain …Robust & adjustable chain drive Easy drive by lightweight single speed gearbox High-energy density lithium-ion battery : Running data acquisition such as suspension, brake, Research steering, motor & battery setting, current & voltage value, acceleration, angle of pedal & handle, research of broken point, seeking of approach for slip sensing

TF14

: Seeking of approach, Computation, Experiment 2014 Development : Minor change (Partial improvement of TF13) ...Lightening by wet carbon cowl -> - 5 kg (1)Frame ⁽²⁾Suspension...Lightening by optimization of parts ③Drivetrain …Lightening by improvement of motor & reducer (Aluminum & carbon hybrid gearbox) -> - 4 kg improvement of energy efficiency by motor control Research : Running data acquisition, research of broken point, dry carbon panel (Forming, adhesion to steel pipe), computation of flow field around drag reduction frame & cowl

TF15

: Test run, Use in actual competition 2015 Development : Full model change (Radical reform applying research in 2014) 1 Frame ...Lightening by semi-monocoque -> - 3 kg Lightening by 10 inch magnesium wheel -> - 5 kg Improvement of energy efficiency by drag reduction ②Suspension...Lightening by 10 inch magnesium wheel -> - 5 kg ③Drivetrain …Lightening by hand-made controller Improvement of electric energy storage system (Capacitor or flywheel) : Running data acquisition, research of broken point, Research development of application to support eco driving, seeking of approach for more improvement of energy efficiency (4 wheels, power, brake, suspension, steering cooperative control), making energy by solar panel on paddock