

Development of Hybrid Flight Simulator with Multi Degree-of-Freedom Robot

Kohei KAKIZAKI, Naoki TSUKABE, Ryota NAKAJIMA, Naohiro INOMATA, Daiju NOGUCHI, Takahiro SENZAKI, Shota NARASAKI

Department of Aerospace Engineering/ Department of Mechanical System Design Engineering Department of Mechanical System Design Engineering Tohoku University

Background (1)

Unsteady Aerodynamics

- The field of use of aircrafts are dramatically expanding
- Unmanned aerial vehicles (UAVs) have a capability of acrobatic flights (Hovering, Turn-around flight, Post-stall maneuver)
- The conventional linear theory based on stability derivatives can not be applied

Unsteady aerodynamics

UAV (Uchiyama Lab, Tohoku univ.)

Post-stall maneuver

2012-13 Boeing Higher Education Student Project Presentation

Background (2)

Experimental Fluid Dynamics (EFD)

- Dynamic Wind-tunnel testing (DWT)
- Free Flight

MPM(DNW)

Flight Dynamics

Calculate behavior of the aircraft

Dutch Roll Motion

EFD + Flight Dynamics = **Hybrid Motion Simulation**

Hybrid Motion Simulation

- Merge experimental fluid dynamics and numerical simulation
- Arbitrary flights can be demonstrated in the wind tunnel

2013/10/15

Past Researches(1)

Contact phenomena of a satellite

- Only contact phenomena are taken out as a physical model
- Since movement of a model is determined by numerical computation, mass, moment of inertia, etc. can be set up arbitrarily
- This approach can replace other physical models
- Hybrid Flight Simulation

Contact phenomena \rightarrow Aerodynamic phenomena

Numerical model

Physical model

2013/10/15

Past Researches(2)

Wing Rock Phenomenon

- Wing Rock is a dynamic behavior of delta wing model at high angle of attack
- Self-induced limit cycle oscillation
- Rotational movement of yaw and roll axes

1-DOF Hybrid Flight Simulation

- Using simple delta wing model
- Motion is restricted within roll axis
- AoA=35 [deg], *u*=10 [m/s]
- Limit cycle can be confirmed

Rolling motion device

Hybrid Motion Simulation

Objectives

Development of Hybrid Flight Simulator with Multi-Degree-of–Freedom Robot

Reproduce simulated flight tests in Wind-tunnel using a multi degree-of-freedom robot

- Forced Oscillation Wind-Tunnel Testing

•To investigate the stability properties of the model

- Flight Testing

- To obtain the real flight data
- Initial Hybrid Flight Simulation in Wind-Tunnel
 - To verify the problems developed for the Hybrid Flight Simulator

2013/10/15

2012-13 Boeing Higher Education Student Project Presentation

Development of 6-DOF Robot Manipulator

2012-13 Boeing Higher Education Student Project Presentation

R/C Aircraft Model

Requirement

- (1) Delta-wing aircraft
- (2) High mobility capable for high AoA flight

(3) Blockage rate is under 20%

Model	Mini JAS-39 Gripen EDF Fighter Jet
Length [mm]	700
Wing chord [mm]	300
Wing span [mm]	510
Sweep angle [deg]	55
Weight [g]	360

Electronics system

• IMU measure the model's attitude, acceleration and velocity

Mini JAS-39 Gripen EDF Fighter Jet

On-board electronics system

Numerical Calculation

Equation of motion

Translation

$$m\dot{V} + m(\omega \times V) = F$$

Rotation

$$I\dot{\omega} + \omega \times I\omega = G$$

- M : Mass
- *I* : Inertia tensor
- *F* : Force
- G : Torque
- V : Velocity
- ω : Angular velocity

Calculate model's position and attitude

• The position and attitude of the model are calculated by integrating acceleration and angular acceleration.

Forced Oscillation Wind-Tunnel Test

Experimental Setup

Frontier Wind-tunnel

- Test section size : 790 [mm] × 790 [mm]
- Blockage rate : 18% (at AoA=40 [deg])

•HEXA-X2

• F/T sensor (Fx, Fy, Fz, Nx, Ny, Nz)

Test Condition

- Evaluation of moving frequency
- Forced oscillation test
 - The effect of angle of attack
 - The effect of frequency

Parameters		
Wind velocity [m/s]	10	
AoA [deg]	10, 20, 30, 40	
Oscillation Frequency [Hz]	0.5, 1.0, 1.5	
EDF Thrust [%]	100	

Result (Evaluation of Moving Frequency)

Time-series data of roll angle

- The control of the robot HEXA-X2 functioned well and the commanded roll angle profile was well traced.
- This result verified the capability of the developed robot for tests with high speed (4Hz).

2013/10/15

Result (The effect of AoA)

•This result indicates that while the angle of attack is increased, the amplitude is increased and the symmetry of hysteresis loop is broken.

Result (The effect of frequency)

- The hysteresis becomes large with increasing frequency, while the area of loop is increased.
- It is considered that this nonlinear behavior of the rolling moment is due to the number and position of breaking down of a leading-edge and tip of the model separation vortex.

2013/10/15

Flight Testing

Experimental Setup

•Flight test was conducted at a reverbed of Osato town, Miyagi.

•Using a catapult in order to give the initial velocity for R/C model. (about 3 m/s)

• The wind disturbance was low.

Test Condition

- The R/C model was launched toward the windward.
- IMU was initialized when the R/C model is horizontal state.

Parameters		
Atomospheric pressure [hPa]	1019.82	
Wind velocity [m/s]	1.93	
Temperature [degC]	22.2	
Model weight [g]	360	
Battery capacity [mAh]	550	

Result of Flight Testing

Result of Flight Testing

Analysis of Unsteady Behavior

- It can be seen that unsteady behavior is identified in roll axis at around 12x seconds.
- Pitch angle is increased slightly at the same time, which indicates the instability of the R/C model in roll axis.

Analysis of Unsteady Behavior

- It can be seen that the control surface (aileron) is input in response to changes in the roll angle.
- It is necessary to introduce the automatic control instead of the control of pilot.

Result (Flight data of Acceleration)

- In order to acquire more probable value, we used Kalman filter because raw data of acceleration is so noisy.
- The flight model launched from the catapult system at around 2 seconds and crashed at around 13 seconds.
- •A large acceleration can be considered as the moment of launch and crash.

Result (Flight data of Velocity)

- It is impossible to calculate the flight speed with sufficient accuracy by simply integrating these data.
- In order to improve the accuracy of the velocity measurement, it is needed to be equipped with some more accurate devices.

Hybrid Motion Simulation Testing

Experimental Setup

- Frontier Wind-tunnel
- •HEXA-X2
- F/T sensor (Fx, Fy, Fz, Nx, Ny, Nz)

Test Condition

• The operator input the elevator to change pitch angle.

Parameters		
Angle of attack [deg]	15	
Wind velocity [m/s]	10	

Result of HMS

- In order to process the force/ moment measurement a low pass filter of the cut-off frequency 10 [Hz] is employed.
- The data measured in the experiments indicates that when the operator tried to change the orientation of R/C model, it behaved accordingly as if in the condition of real flight.

Conclusion

- We have developed a hybrid flight simulator for dynamic wind-tunnel testing.
- In order to realize multi degree-of-freedom motion, we developed HEXA-X2, 6 degree-of-freedom robot manipulator, and it can realize 4[Hz] rolling.
- Forced oscillation wind-tunnel testing results indicated that nonlinear behavior of the rolling moment can be identified and the reason for it is considered as the number and position of break down of a leading-edge and tip of the model separation vortex.
- Flight test of R/C model to gather the flight data for validation is necessary for hybrid motion simulation. Roll-direction unsteady behavior of R/C model was observed at the high angle of attack.
- As for the hybrid motion simulation, currently initial tests were completed, in which physical parameters larger than the practical value are used in order to ensure stability.

Future Works

Forced Oscillation Wind-tunnel Testing

• In order to elucidate this phenomenon, we will conduct flow visualization experiment and determine the structure of leading-edge and tip of the model separation vortex.

Flight Testing

• In order to improve the accuracy of the velocity measurement, it is needed to be equipped with some devices.

Hybrid Motion Simulation

• After some further improvements, for example the delay of system, it is expected that the proposed hybrid flight simulator can be used as a powerful tool for aerodynamics research.

Thank you for your attentions!