## Unsteady Flow Calculation Using Implicit Method on a Moving Unstructured Grid

#### Yuta SAWAKI Department of Aerospace Engineering Tohoku University

# Outline

- Background
- > Objective
- Spatial discretization method
- Validation of present code
  - NACA0012 airfoil pitching case
  - AGARD445.5 wing flutter case
- Summary
- Future works

# Flutter

- Self oscillation caused by aerodynamic, elastic and inertial forces
- Easy to occur in case of high aspect ratio, thin wing and low stiffness in the material
- Wing may be broken





http://www.aero.jaxa.jp/reseach/kitai/ki-kuuriki.html



Examination of flutter properties is getting more and more important



# **Examination of Flutter Properties**

- Wind tunnel test
- Numerical analysis

Analysis assuming linear aerodynamic force

- Insufficient result for shock wave
- Computational cost is lower



Pursue performance by cutting extra margin of safety

Analysis assuming **non-linear** aerodynamic force

- Better result for shock wave
- Computational cost is higher
- Contribute to reduction of the number of tests

# Objective

- Develop fluid-structure interaction code that can calculate flutter case on composite wing with engine-nacelles
  - CFD code development
    - FVM on moving grid
    - Unstructured grid method
    - Unsteady flow calculation
    - Implicit time integration
  - Code validation
    - NACA0012 airfoil pitching case
    - AGARD445.6 wing flutter case



http://adl.stanford.edu/docs/download/attachments/589829/DLR-F6\_2.png?version=1&modificationDate=1323916413179&api=v2

### **Spectral Volume Discretization**

- Finite volume method
- > High order unstructured grid method

Tetrahedral cell (= Spectral Volume(SV))

**Further subdivided** 

4 hexahedral cells (= Control Volume(CV))

- Governing equations are solved in each CV
- Distribution of variables in SV is written by high order polynomial constructed by 4 CV cell average values

## Validation of Moving Grid FVM Code

NACA0012 airfoil pithing case
Compared with Landon's experiment

## **Numerical Methods**

Governing equations

- Spatial discretization
- Numerical flux

Viscous term gradient

Time integration

Implicit method Turbulent model

- :3D Euler/RANS equations
- :2nd order Spectral Volume(SV) method
- : SLAU, Rusanov (Implicit Jacobian)
- : BR2 method
- : 3rd order implicit Runge-Kutta method 3rd order explicit Runge-Kutta method
- : LU-SGS method with inner iteration
- : Spalart-Allmaras model

## **Computational Grid**

#### ➤ Euler

- Tetrahedra: 72,006
- Computational domain: 30 chord

#### RANS

- Tetrahedra: 99,486
- Computational domain: 30 chord
- Off wall spacing:  $5.5 \times 10^{-6}$ (  $y^+ = 1$  for Re =  $4.8 \times 10^6$  )



## **Computational Conditions**

#### Free stream condition

- Mach number: 0.6
- Reynolds number:  $4.8 \times 10^6$

#### Criteria for ending inner iteration

•  $\Delta Q < 10^{-7}$ 

#### > CFL number, $\Delta t$ , inner iteration

|       | $CFL(\varDelta t)$          | Inner iteration |
|-------|-----------------------------|-----------------|
| Euler | 150( $7.5 \times 10^{-3}$ ) | 10              |
| RANS  | 750( $7.5 \times 10^{-4}$ ) | 16              |

#### Pitching condition

• Pitching center: 25% of chord

AoA: 
$$\alpha = \alpha_m + \alpha_0 \sin(\omega t)$$

- Mean AoA:  $\alpha_m = 2.89$  [deg.]
- Amplitude:  $\alpha_0 = 2.41$ [deg.]
- Non-dimensional frequency: k = 0.0808

$$k = \frac{\omega c}{2U_{\infty}} \qquad \begin{array}{c} \omega : \text{frequency} \quad c: \text{chord} \\ U_{\infty} : \text{free stream velocity} \end{array}$$





പ്

## Validation of Fluid-Structure Interaction Code

• AGARD445.6 wing flutter case - Compared with Yates's experiment

## Numerical Methods

#### Fluid analysis $\succ$

Time integration

Governing equations : 3D Euler equations

:2nd order Crank-Nicolson method

#### Structure analysis

Governing equation Mode analysis Modal damping ratio Time integration

- : Motion equation
  - :1st 5th mode
- :0.02
  - : 2nd order backward difference

#### Grid deformation

Interpolation method using function weighted by inverse distance

## AGARD445.6 Wing Structure Model



| Mode                       |                                  | 1st<br>(bend) | 2nd<br>(torsion) | 3rd<br>(bend) | 4th<br>(torsion) | 5th<br>(bend) |
|----------------------------|----------------------------------|---------------|------------------|---------------|------------------|---------------|
| Eigen<br>frequency<br>[Hz] | Computational<br>data<br>(Yates) | 9.6           | 38.2             | 48.3          | 91.5             | 118.1         |
|                            | Experimental<br>data             | 9.6           | 38.1             | 50.7          | 98.5             | -             |

\* E. Carson Yates Jr., ``AGARD Standard Aeloelastic Configuration for Dynamic Responce I-Wing 445.6", NASA TM 100492, 1987

## **Computational Grid**

- Tetrahedra: 193,068
- Computational domain: 30 MAC



## **Computational Conditions**

- Free stream condition
  - Mach number: 0.499, 0.678, 0.901, 0.960, 1.072, 1.141
  - AoA:0.0 [deg.]
- Criteria for ending inner iteration
  - $\Delta Q < 10^{-7}$
- > CFL number,  $\Delta t$ , inner iteration

|       | CFL(⊿t)                    | Inner iteration |
|-------|----------------------------|-----------------|
| Euler | 50( $7.5 \times 10^{-3}$ ) | 8               |

## Flutter Boundary

FSI

Flutter Speed Index (FSI)

$$FSI = \frac{U_{\infty}}{b_s \omega_{\alpha} \sqrt{\overline{\mu}}}$$
$$\overline{\mu} = \frac{\overline{m}}{\rho_{\infty} v}$$

- $U_{\scriptscriptstyle \infty}$  : Free stream velocity
- $b_s$  : Half root chord
- $\omega_{\alpha}$  : Eigen frequency (1st torsion)
- $\overline{m}$  : Wing model mass
- $ho_{\scriptscriptstyle{\infty}}$  : Free stream density
- v : Truncated cone volume



## $C_p$ Distribution (Euler vs. RANS)



#### Flutter boundary(Euler)



Different distribution between Euler and RANS at shock wave

## Summary

CFD code on moving grid was developed

- ✓ NACA0012 airfoil pitching case
- $C_n$  hysteresis loop was obtained
- Computational cost by implicit method was 1/7 as compared with explicit method without getting worse result
- Results came close to experimental data by considering viscosity
- Fluid structure interaction code was developed
  - ✓ AGARD445.6 wing flutter case
  - Good agreements with experimental data were obtained at subsonic
  - Unique transonic dip to non-linear phenomena was observed
  - Flutter boundary was overestimated at supersonic

### **Future Works**

#### > AGARD445.6 wing flutter case(supersonic region)

- Viscous flow analysis
- Dense grid at trailing edge to capture shock wave

Flutter analysis on composite wing with engine-nacelles