Boeing Higher Education Program Presentation

Data Assimilation Method for EFD/CFD Integration

<u>Takumi Ambo</u>, Chen Fang Department of Aerospace Engineering / Institute of Fluid Science Tohoku University

Background -Aerodynamics of low Re number condition-

тоноки

Appearance of Small airplanes

- Unmanned air vehicle (UAV)
- Micro air vehicle (MAV)

Flight in Low *Re* conditions ($Re = 10^4 \sim 10^5$)

- Aerodynamic characteristics
 - Different from High Re number condition
 - Nonlinearity
- Flow field around wing
 - Separation or transition of boundary layer
 - Formation of separation bubble

Three-dimensionality

Generation of wingtip vortex

Three-dimensional flow field

It is necessary to investigate aerodynamic characteristics on the three-dimensional wing in low *Re* condition.

Unmanned Air Vehicles (http://en.wikipedia.org/wiki/Unmanned_aerial_vehicle)

(Anyoji et al, 2010)

Background -EFD & CFD-

Background -Data Assimilation-

Forecast error

• Data assimilation is an analysis technique in which the observed information is accumulated into the model state by taking advantage of consistency constraints with laws of time evolution and physical properties.

τοнοκι

Past Studies

Data assimilation

• Computational Study of Flow around a Delta Wing for Measurement-Integrated Simulation with Dynamic Wind Tunnel Testing (Shuta Ito, 2013)

図 4.19 t/T = 0.0における渦の比較(上), C_p 分布とu = 0の等値面(下)

Make the numerical simulation become highprecision using Data assimilation method to understand the aerodynamic phenomenon

Contents

- EFD
 - Force measurement
 - Flow visualization
- CFD
 - Calculating Lift coefficient and surface streamline

EXPERIMENTAL FLUID DYNAMICS (EFD)

Experimental Equipment

Wind-tunnel

► Low Turbulence Wind Tunnel (Tohoku Univ.)

- Type
- Test section
- Test section size
- Turbulence intensity
- : closed circuit
- : open type and octagon
- : cross distance of 0.8 m
- : 0.02 %

Test model

≻Wing

- Airfoil : NACA0012
- Chord length :75 mm
- Span length : 400 mm
- Material
- ≻Body
 - Diameter
 - Material
- : 30 mm
- : Aluminum

:Wood(MDF)

Measurement method -Force measurement-

Measurement method -Visualization-

- Global Luminescent Oil-Film Skin-Friction Meter (GLOF method)
- Oil doped with luminescent molecules is put on the test model.
- Skin friction can be measured to capture timechanging of emission intensity.
- Systems
- Fast camera : Lends and optical filter are set forward of camera
- Light source: UV-LED units
- Luminescent oil film
 - Oil: Silicone oil
 - Fluorescent dye: Perylene

Luminescent oil film on the model

Line of frictional stress

Boeing Higher Education Program Presentation

COMPUTATIONAL FLUID DYNAMICS (CFD)

Computation

■ FaSTAR : Developed by JAXA

- Aerodynamic coefficients
- Surface streamline

Realization of the laminar flow - turbulence transition calculation
: Turbulence energy equation of Menter SST model

$$\frac{D\rho k}{Dt} = \gamma * \min\left(P, \frac{Re_{\infty}}{M_{\infty}} 20\beta^* \rho \omega k\right) - \frac{Re_{\infty}}{M_{\infty}}\beta^* \rho \omega k + \frac{M_{\infty}}{Re_{\infty}} \frac{\partial}{\partial x_j} \left[(\mu + \sigma_k \mu_t) \frac{\partial k}{\partial x_j}\right]$$

Computation

* Initial condition : It is decided based on separation position of experimental results.

Assimilation method : Ensemble Kalman Filter (EnKF)

Computation

2014/11/20

Boeing Higher Education Program Presentation

Test conditions

Experimental conditionsWind-tunnelLow turbulence wind-tunnelFree-stream velocity [m/s]30Angle of Attack, α [deg]-10 ~ 30 [deg]MeasurementAerodynamic forces, Frictional stress line

Calculation conditions

Free-stream velocity [m/s]	30
Angle of Attack, α [deg]	0 ~ 15
Re	1.5×10^{5}
Turbulence model	Menter SST
Analysis method	Steady
Number of grid	2×10^{6}

RESULTS

Results -Lift coefficient-

THEORY OF WING SECTIONS ■ Lift force 462 2.8 2.4 0.8 × 10⁶ Standard roughnes 6 × 10⁶ 2.0 0.6 1.6 1.2 0.4coefficient, c1 0.8 0.1 0.4 \vec{c} lift 0.2 à Section D coefficient, cmc/ -0.1 -0.4 0 -0.2 -0.8 Moment -0.2 -0.3 -1.2 0.20c simulated spl deflected $Re = 1.5 \times 10^5$ -1.6 -0.4 -0.4 -24 16 -1624 32 -8 -5 5 10 15 20 0 Section angle of attack, co, deg. NACA 0012 Wing Section Angle of Attack [deg] Theory of wing sections (1959)

- > The characteristics of lift force is different from high Re number condition.
- Stall angle and maximum lift coefficient are lower.

Results - Frictional stress line -

Boeing Higher Education Program Presentation

Results -Calculated Lift coefficient-

- → Under α = 8 deg : Experimental value \approx Calculated value.
- > After $\alpha = 8 \text{ deg}$ > There're difference between EFD and CFD results.
- High AoA Separation bubble in leading edge Convergence is difficult.
- > Shifting boundary of laminar and turbulent \Rightarrow C_l changes.

Results - Calculated Surface streamline, $\alpha = 8 \deg$ -

To control boundary layer transition points using data assimilation method is useful as a means for approximating CFD results with EFD results

Experiment and Calculation using same model were conducted and each results were compared.

- In EFD, force measurement and flow visualization were conducted.
- In CFD, location of transition line influences lift coefficient and surface streamline.

Future Works

- Conducting calculation of controlling boundary layer transition points using data assimilation method.
- Apply this method to other unsteady flow conditions like dynamic windtunnel testing.

Thank you for your attention