Wing Flutter Computation Using Modified Spectral Volume Method

Yuta SAWAKI Department of Aerospace Engineering Tohoku University

Outline

- Background
- > Objective
- Spatial discretization method
- Validation of present code
 - Unsteady flowfield over NACA0012 airfoil in pitching motion
- Flutter computation
 - AGARD445.5 weakened wing
- Summary
- Future works

Transonic Flutter

- Self oscillation caused by aerodynamic, elastic and inertial forces
- Easy to occur in case of high aspect ratio, thin wing and low stiffness material
- Wing may be broken

http://www.aero.jaxa.jp/reseach/kitai/ki-kuuriki.html

Examination of flutter characteristics is getting more and more important

Examination of Flutter Characteristics

- Wind tunnel test
- Numerical analysis

Analysis assuming linear aerodynamic force

- Cannot consider shock wave
- Computational cost is lower

Pursue performance with flutter margin

Analysis assuming **non-linear** aerodynamic force

- Can consider shock wave
- Computational cost is higher
- Reduce number of wind tunnel tests

Objective

- Develop fluid-structure interaction code
 - CFD code development
 - ALE formulation for moving grid
 - Extend conventional SV method to hybrid unstructured mesh
 - Code validation
 - Unsteady flowfield over NACA0012 airfoil in pitching motion
 - Flutter computation
 - AGARD445.6 weakened wing

Conventional Spectral Volume Method

- Finite volume method
- > High order unstructured grid method

Tetrahedral cell (= Spectral Volume(SV))

Further subdivided

4 hexahedral cells (= Control Volume(CV))

- Governing equations are solved in each CV
- Distribution of variables in SV is written by high order polynomial consists of 4 CV cell average values

Reconstructed polynomial: $\tilde{Q}(\xi,\eta,\zeta) = \sum_{j=1}^{4} L_j(\xi,\eta,\zeta) \overline{Q}_j$

Shape function: $L_j(\xi, \eta, \zeta) = c_j^1 \xi + c_j^2 \eta + c_j^3 \zeta + c_j^4$

Modified SV Method for Flutter Analysis

- Arbitrary Lagrangian-Eulerian (ALE) formulation for moving grid
- Extended to utilize hybrid unstructured meshes
 - Conventional SV utilizes only tetrahedral cells (4DOFs)
 - Although number of DOFs is increased in each cell other than tetrahedral cells, the total number of computational cells can be substantially reduced
 - Convergence rate is significantly improved by introducing prismatic cell layers on the solid wall
 - Truly second order even for skewed unstructured meshes
 - Adaptive mesh refinement is easily devised by hierarchical subdivision of control volume

Prism 6DOFs

Hexahedron 8DOFs

Convergence histories for turbulent boundary layer over flat plate

Validation of Present Code on Moving Grid

- Unsteady flowfield over NACA0012 airfoil in pitching motion
 Compared with Landon's experiment
 - Compared with Landon's experiment

Numerical Methods

Governing equations

Spatial discretization

Numerical flux

Viscous term gradient

Time integration

Implicit method

Turbulence model

:3D Euler/RANS equations

: 2nd order modified SV method

: SLAU

: BR2 method

: 2nd order backward difference formula (BDF2)

: LU-SGS method with inner iteration

: Spalart-Allmaras model

Computational Grids

➤ Euler

- Hexahedrons: 19,720
- Computational domain: 30 chord

➢ RANS

- Hexahedrons: 28,500
- Computational domain: 30 chord
- Off wall spacing: 5.6×10^{-6} (y⁺ = 1)

Computational Conditions

Free stream condition

- Mach number: 0.6
- Reynolds number: 4.8×10^6
- Criteria for ending inner iteration
 - $\Delta \rho < 10^{-7}$
- $\succ \Delta t$, CFL, inner iterations

	$CFL(\varDelta t)$	Inner iteration
Euler	300(0.05)	25
RANS	23,000(0.05)	50

Pitching condition

• Pitching center: 25% of chord

AoA:
$$\alpha = \alpha_m + \alpha_0 \sin(\omega t)$$

- Mean AoA: $\alpha_m = 2.89$ [deg.]
- Amplitude: $\alpha_0 = 2.41$ [deg.]
- Non-dimensional frequency: k = 0.0808

 $k = \frac{\omega c}{2U_{\infty}}$ ω : frequency c : chord U_{∞} : free stream velocity

Pitching motion

Results

Flutter Computation Using Fluid-Structure Interaction Code

 Flutter prediction for AGARD445.6 weakened wing

 Compared with Yates's experiment

Numerical Methods

Fluid analysis

Governing equations Time integration :BDF2(implicit)

: 3D Euler/RANS equations

Structure analysis

Governing equation Mode analysis Modal damping ratio Time integration

- : Equation of motion using modal analysis
- :1st 5th mode
- :0.02
 - :BDF2(implicit)

Grid deformation

Interpolation method using function weighted by inverse distance

AGARD445.6 Wing Structure Model

Mode		1st (bend)	2nd (torsion)	3rd (bend)	4th (torsion)	5th (bend)
Eigen frequency [Hz]	Computational data (Yates)	9.6	38.2	48.3	91.5	118.1
	Experimental data	9.6	38.1	50.7	98.5	-

* E. Carson Yates Jr., ``AGARD Standard Aeloelastic Configuration for Dynamic Responce I-Wing 445.6'', NASA TM 100492, 1987

Computational Grids

➤ Euler

- Tetrahedrons: 190,436
- Computational domain: 30 MAC

➢ RANS

- Tetrahedrons: 178,278
- Prisms: 310,464
- Computational domain: 30 MAC
- Off wall spacing: 2.4×10^{-5} ($y^+ \le 2$)

Computational Conditions

- Free stream condition
 - Mach number: 0.499, 0.678, 0.901, 0.960, 1.072, 1.141
 - AoA:0.0 [deg.]
- Initial condition
 - Steady flow field solution
 - Tiny oscillation assumed in the 1st bending mode
- Criteria for ending inner iteration
 - $\Delta \rho < 10^{-7}$
- > CFL number, Δt , inner iteration

	$CFL(\varDelta t)$	Inner iteration
Euler	50(0.0075)	8
RANS	400,000(0.05)	20

Comparison of Flutter boundary

Flutter Speed Index (FSI)

$$FSI = \frac{U_{\infty}}{b_s \omega_{\alpha} \sqrt{\overline{\mu}}}$$
$$\overline{\mu} = \frac{\overline{m}}{\rho_{\infty} v}$$

- U_{∞} : Free stream velocity
 - : Half root chord
 - : Eigen frequency (1st torsion)
 - : mass ratio

 b_s

 ω_{α}

 $\overline{\mu}$

 \overline{m}

- : Wing model mass
- ho_{∞} : Free stream density
- ν : Truncated cone volume

- More dissipative shock wave in RANS
- Large Peak difference of negative C_p at supersonic

Summary

SV code is successfully extended to include:

- ALE formulation
- Unstructured hybrid meshes
- Code validation study for flowfield over NACA0012 airfoil in pitching motion
 - C_n hysteresis loop is successfully reproduced when viscous effect is taken into account
- Fluid-structure interaction code is developed to consider AGARD445.6 weakened wing
 - Flutter boundary is reproduced for subsonic cases
 - Transonic dip phenomenon is well reproduced
 - Consideration of viscous effect obviously improves flutter boundary prediction at supersonic freestream, though some distinctions are yet remained

Future Works

- Further study for AGARD445.6 wing flutter at supersonic freestream
 - Is RANS simulation adequate for quantitative prediction ?
 - Do we need to employ LES or DES ?
 - Is consideration of boundary layer transition necessary?
- Examine several aeroelastic problems chosen from AIAA Aeroelastic Prediction Workshop for improving numerical methods
- Consideration of wing flutter with engines mounted on wing