Tohoku University

Windnauts

Shin Matsuzaki, Yushin Hara

What is Windnauts?

→ We make the human powered aircraft for participating in the Birdman rally at Biwa lake.
→ We compete distance from taking off to landing on the water.

✤ In 2015, 35 members belonged to our team.

Official name	Human-powered flight club
Team name	Windnauts
Founding	1993
Average production cost	¥250,000

Our records

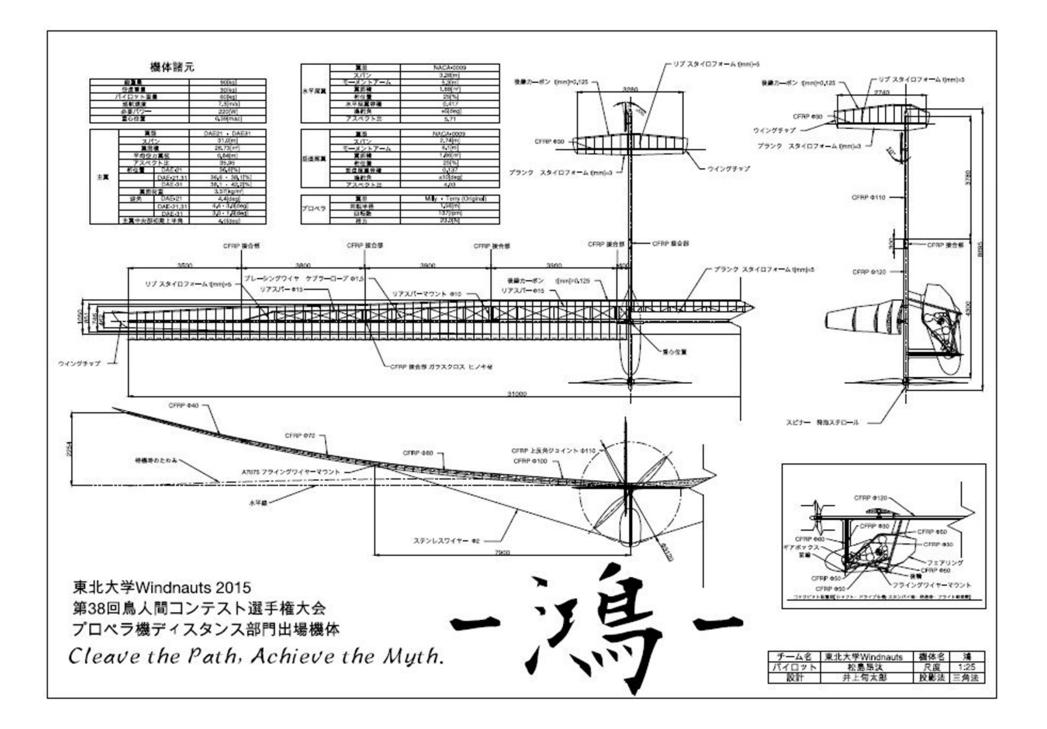
year	event	Aircraft name	Record	
2006	30 th rally	谺 ~echo~	28,628m	1 st /18 team
2008	32 th rally	來(sou)	36,000m	1 st /13 team (Tourney record)
2009	Record Flight	Rera	20,720m	FAI official record
2011	34 th rally	Riih	18,687m	1 st /11 team
2012	35 th rally	翠(sui)	14,129m	1 st /11 team
2015	38 th rally	鴻(kou)	35,367m	1 st /11 team

→ We have...

- •5 times victory at Birdman rally.
- Tourney record, 36,000m, at Birdman rally.
- FAI official record.

Design concept

Theme


✤ How to win the Birdman rally in any conditions.

→ Designer …Designing high speed and short span wing.	ort span wing. Removing effect of external wind. Improving steering performance.	
	Making good escape from complex wind conditions.	
→ Worker …Planning minutely, then attaining roll-out early.	Being experienced many test flights,(=wind conditions) for pilot,	

✤Our result of winning the Birdman rally, distance section.

× Low power then aim the farthest record.

✓ <u>High speed then overcome the day's wind condition.</u>

Meaning of Test Flight

✤ Final tuning of aircraft

Assembling Checking center of gravity and resolving the other initial failures

Meaning of Test Flight

→ Flight training of pilot
 → handling tail and flying horizontally,
 adjusting thrust power and keeping airspeed

Flow of tuning at Test Flight

- 1. Practice of the departure and taking off
- 2. Tuning the center of gravity by observing the appearance of steady flight
- 3. Control of the posture of aircraft by steering horizontal and vertical tails

Flow of tuning at Test Flight

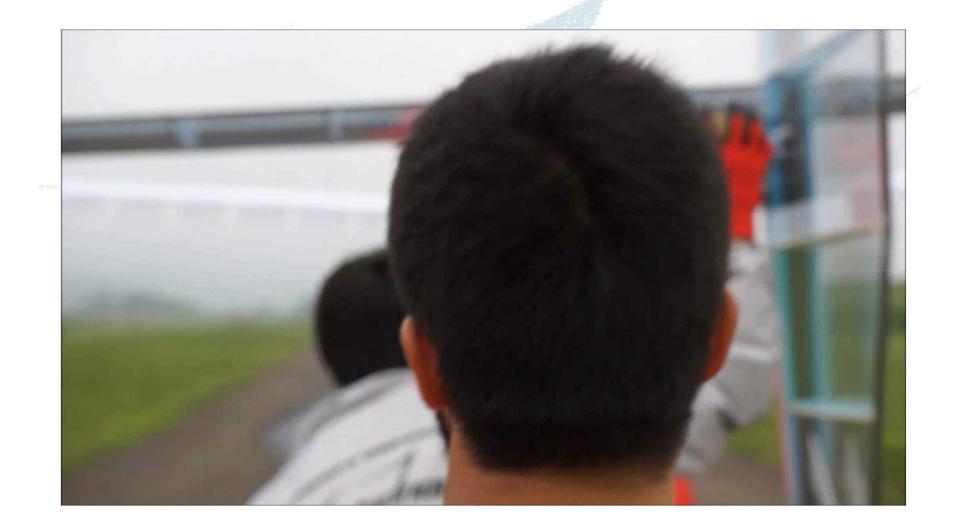
- 1. Practice of the departure and taking off
- 2. Tuning the center of gravity by observing the appearance of steady flight
- 3. Control of the posture of aircraft by steering horizontal and vertical tails

'15.6.5 Test Flight at Tohoku Univ.

Flow of tuning at Test Flight

- 1. Practice of the departure and taking off
- 2. Tuning the center of gravity by observing the appearance of steady flight
- 3. Control of the posture of aircraft by steering horizontal and vertical tails

'15.6.20 Test Flight at Kakuda



Flow of tuning at Test Flight

- 1. Practice of the departure and taking off
- 2. Tuning the center of gravity by observing the appearance of steady flight
- 3. Control of the posture of aircraft by steering horizontal and vertical tails

'15.7.5 Test Flight at Kakuda

Result of the competition

Flight route

Rank	Team	Record[m]
1st	Tohoku University	35367.02
2nd	Nihon University	22892.36
3rd	Osaka Institute of Technology	5368.97

The Birdman Rally 2015

Summary

- → We created a HPA within a year.
 → Completed aircraft was brushed up through the test flight.
- → We participated in the birdman rally, and won.

Additional Slides

Specifications

Specification		Propeller				
Gross weight	90[kg]	Airfoil	Milly-Terry(Original)			
Empty weight	30[kg]	Rudius	1.56[m]			
Design cruising speed	7.3[m/s]	Rotational speed	137[rpm]			
Need power	220[W]	Thrust power	23.0[N]			

	Main wing			
Airfoil	DAE21 - DAE31			
Span of wing	31.0[m]			
Wing area	26.8	3[m ²]		
Aspect ratio	35.95			
	DAE-21	4.4[deg]		
Angle of attack	DAE-21,31	4.4-3.0[deg]		
	DAE-31	3.0-1.8[deg]		
Dihedral angle	4.0[deg]		

Appearance of each section

Jig installation Jig made by ABS resin or balsa

All parts are filed by the hand of workers

Appearance of each section

Carbon cloth impregnated with epoxy

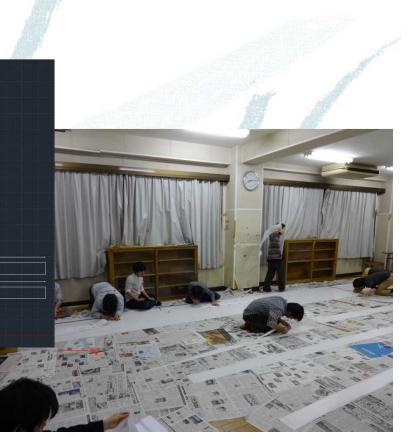
And rapping.

Fillet increase workability

Appearance of each section

Intersection plank and fix

Wing


Columnar beam made by CFRP

Making columnar beam made by CFRP is most important work of all.

So, we set to work it every member. We spend all weekend on making them.

	•		4450				
				1500	707		
						43- 53-100	
						-250	
1	φ80MW ply12 90deg φ80M	W ply12 90deg				φ80MW ply12 90deg	
-28	wooming big is socied woom	w ply 12 bodeg	φ80MW ply12 90	ideg φ80MW ply	/12 90deg	woomvv pry 12 bodeg	
			14				
	600 MW nor	i8 ply11					
-9	+						
			MW nori7 ply10				
- 25		2600					
				MW nori6 ply9			
			4450			MW nori 5 ply8	
99			100			may non 5 piyo	
			4450		A REAL PROPERTY OF	MW nori4 ply7	
4			4450				
,						MW nori3 ply6	
Î			4450				
8	20-		4450			MW nori2 ply5	
1						MW nori1 ply4	
. 28					-7300		
	Ø80MW ply3 45deg						
					7300		
	p80MW ply2 45deg						
-183-	Choose have acced						
			-990	990		o <u> </u>	
-990-	φ80MW ply1 φ80MW ply1 90r	deg	ply1 90deg 🛛 🛛	80MW ply1 90deg	φ80MW pl	y1 90deg	
9	1000						
			4450				

Designing beam efficiency. Arranging each lamination parts on prepreg

Drawing line using pencils and ruler. Cutting follow the line using scissors.

Columnar beam made by CFRP

Lamination Ply1 90° Ply2 0° Ply5~ base on Ply3 45° each design Ply4 -45°

Cloth is overlaid with prepreg. Cloth absorbs futile epoxy, and beam become light. Surface became rough, and workability are increase.