Boeing Higher Education Program, Nov. 18, 2015

Visualization of Flow-field around a Magnetically-Suspended Model

Takumi Ambo, Shuhei Taniguchi, Daiju Noguchi, Takaya Otsuki

TOHOKU UNIVERSITY Dept. of Aerospace Engineering

Introduction

Background

Magnetic Suspension and Balance System

- \succ Test model is levitated by magnetic force.
- \succ Wind tunnel test can be conducted without mechanical support system.
- \triangleright Aerodynamic forces can be calculated by current flowing through coils.
- \succ The position and attitude of the model for control are obtained by optical sensing system.

I Flow Visualization

➤ Generally, flow visualization tests are conducted to clarify a flow field in windtunnel testing.

0.3m-MSBS coil system

Magnetically suspended model in 0.3m MSBS

In MSBS, there are problems for visualization, because optical system of visualization might disturb the position sensing system.

Objective

To develop visualization method for magneticallysuspended model.

Sensing system of the MSBS

- **The position sensing for control**
- The sensing system using CCD line sensor cameras
 - \checkmark Detecting the edges and the marker of the model.
 - \checkmark The position is measured from two directions, upper and lateral side.
 - ✓ 5 axes (x, y, z, pitch, yaw) can be detected by using 5 CCD cameras.
 - To decrease interference between sensing system and optical system of visualization, only blue LEDs are used for sensing.

Visualization method

Global Luminescent Oil-Film Skin-Friction Meter (GLOF method) T.Liu et al, 2008

Coil

Experimental Results

Selection of luminescent pigment

- > Necessary conditions
 - \checkmark Excitation light source is UV, and sensor LEDs are blue.
 - ✓ Long wavelength emission like yellow or red are needed.
 - Pigment with yellow emission was used.

Oil doped with luminescent pigments

Levitation with oil putting and excitation light source

- \checkmark Interference between sensor and visualization system was prevented.
- \checkmark Levitation was succeeded.

Acquisition of images in windtunnel testing

✓ Images were acquired under ventilated condition.

Luminescent oil put on the levitated model

- \succ Oil doped with luminescent molecules is put on the test model.
- Skin friction can be measured to capture time-changing of emission intensity. X_2
- ✓ Relation equation between time-changing of oil film thickness and skin friction. X_i : Space coordinates μ : Viscosity of oil $\frac{\partial h}{\partial t} + \frac{\partial}{\partial X_{i}} \left[\frac{h^{2} \tau_{i}}{2\mu} - \left(\frac{\partial p}{\partial X_{i}} - \rho g_{i} \right) \frac{h^{3}}{3\mu} \right] = 0 \quad (i = 1, 2) \quad \begin{array}{c} t : \text{Time} \\ h : \text{Thickness of oil film} \\ \tau_{i} : \text{Frictional stress} \\ \end{array} \begin{array}{c} g_{i} : \text{Gravity} \end{array}$

 $-\frac{\partial u_1}{\partial X_1}dX_1$

- \checkmark Relation equation between emission intensity and thickness of oil film. *I* : Amount of luminescence of oil $I(X_1, X_2) = aI_{ex}(X_1, X_2)h(X_1, X_2)$ *a* : Constant of proportion
 - I_{ex} : Amount of luminescence of excitation light
- \checkmark Relation equation between skin friction and emission intensity.

 $\frac{\partial I_r}{\partial t} + \overline{C}_{f1} \frac{\partial I_r}{\partial x_1} + \overline{C}_{f2} \frac{\partial I_r}{\partial x_2} = 0 \qquad \begin{array}{l} I_r = I/I_{ex} \\ \overline{C}_f = C_f I_r \lambda a/2\mu \\ \text{Terms of pressure gradient and gravity are ignored.} \end{array}$

Skin friction is calculated by using "Optical flow" technique. Optical flow can calculate the movement speed of the object on the image.

Line of frictional stress Example of the application of GLOF (Surface of wing model)

Test model

- Skin friction line was obtained by processing images.
- \checkmark Separation at trailing end of the model was visualized.

Skin friction line on the model trailing end

Summary

- Levitation succeeded.
- Suitable pigment from the viewpoint of measurement wavelength was selected.
- > Acquisition of images under ventilation condition was succeeded.
- > Skin friction line were obtained by image processing and separation line was observed.

Future works

- \succ It is needed extension of visualized area.
- > Application of other visualization method (PSP, TSP, etc.).