Boeing Higher Education Program Debriefing Meeting January 21st, 2019, @Boeing Japan, Tokyo

Development of Dynamic Wind Tunnel Test Using 1-m Magnetic Suspension and Balance System

Shogo Oyama, Kasumi Sasaki, Hiroki Senda

Graduate School of Engineering, Tohoku University

Aiming for Safety Flight

Fatalities by CICTT Aviation Occurrence Categories

Fatal Accidents | Worldwide Commercial Jet Fleet | 2008 through 2017

Note: Principal categories as assigned by CAST.

For a complete description of CAST/ICAO Common Taxonomy Team (CICTT) Aviation Occurrence Categories, go to www.intlaviationstandards.org.

22 | 2017 STATISTICAL SUMMARY, OCTOBER 2018

The Boeing Company, 2018.

Aiming for Safety Flight

Modeling the extreme flight condition

= Near or outside of the edge of the flight envelope

Unsteady aerodynamics affect the flight characteristics

NASA Langley (from YouTube), 1960.

How to Understand Unsteady Aerodynamics

Issues of dynamic wind tunnel

- Complicated support mechanism or limit the motion degrees-of-freedom
- Interference with flow stream or apply the correction (very hard)
- MSBS : <u>Magnetic Suspension and Balance System</u>

D. D. Victory, et al., 2014.

MSBS can perform the wind tunnel tests without mechanical interference

1-m MSBS : The largest MSBS in the world

Make a motion

Considering a simple forced-oscillation test

2 Measure an unsteady aerodynamic force

Validating with inertial force

Our goal

- Evaluation of the motion accuracy
- Validation of the force evaluation accuracy
- Dynamic wind tunnel at simple flight condition
 - Dynamic wind tunnel at extreme flight condition

Our goal

- Evaluation of the motion accuracy
- Validation of the force evaluation accuracy
- Dynamic wind tunnel at simple flight condition
 - Dynamic wind tunnel at extreme flight condition

Motion Accuracy

How to excite the model:

Motion Accuracy

How to excite the model:

Motion Accuracy

^{2019.1.21} Boeing Higher Education Program Debriefing Meeting

Our goal

- Evaluation of the motion accuracy
 - Validation of the force evaluation accuracy
 - Dynamic wind tunnel at simple flight condition
 - Dynamic wind tunnel at extreme flight condition

Force Measurement Accuracy

How to measure the aerodynamic force:

Force Measurement Accuracy

Validation with Inertial torque

Our goal

- Evaluation of the motion accuracy
- Validation of the force evaluation accuracy
 - Dynamic wind tunnel at simple flight condition
 - Dynamic wind tunnel at extreme flight condition

Wind tunnel in simple flight condition

Test condition

AGARD-B winged model	Condition	Value
3,4,5 Hz	Oscillatory direction	pitch
	Free stream velocity [m/s]	25
1degree	Reynolds number (based on m.a.c.)	2.9×10^{5}
	Oscillation frequency [Hz]	3, 4, 5
	Oscillation center AoA [deg]	0.0
25 m/s	Oscillation amplitude [deg]	1.0
	Reduced Frequency	$0.065 \sim 0.109$

Evaluated flight parameter

Measurement object :	Motion	$\theta(t) = \theta_0 \sin(2\pi f t)$
	Aerodynamic moment	$N_y(t) = N_{y0}\sin(2\pi ft + \tau)$
<u>Stability derivatives :</u>	Static stability (Also obtained by static test)	$C_{m\alpha}$
	Dynamic stability	$C_{m\dot{\alpha}} + C_{mq}$

Wind tunnel in simple flight condition

Stability derivatives evaluation

	Condition	$C_{m\alpha}$ [/deg]	$C_{m\dot{\alpha}} + C_{mq} [/rad]$
Pro	3 Hz	0.010 ± 0.000	-0.9 ±0.5
	4 Hz	0.010 ± 0.000	-0.8 ± 0.2
	Present 5 Hz	0.010 ± 0.000	-1.0 ± 0.1
	Static	0.010 ± 0.000	-
	DATCOM	0.008	-1.1

DATCOM : a computer-based evaluation

Static stability agreed well between dynamic and static tests

→ <u>The dynamic wind tunnel was performed appropriately</u>

2 Dynamic stability approximately agreed each other

Aerodynamic stability evaluation in unsteady flight condition is available

Future plan suggestion

H. Senda, et al. (2018)

- Evaluation of the motion accuracy
- Validation of the force evaluation accuracy
- Dynamic wind tunnel at simple flight condition
- Dynamic wind tunnel at extreme flight condition

Future plan suggestion

Issues to make this study practical

Perform the dynamic wind tunnel with :

- a) High angles of attack
- Large amplitude and frequency b)

Torque of wind-on condition (4 Hz)

3 Perform the test with realistic shaped model

Summary

Development of dynamic wind tunnel technique using 1-m MSBS :

Motion accuracy

Error of AoA : within 0.005 deg

Unsteady force evaluation accuracy

Error of evaluation : within 2.4 % in amplitude, 0.1 degree in phase

Dynamic wind tunnel

Evaluated dynamic stability agreed well with estimated value

Unsteady aerodynamic measurements using 1-m MSBS are feasible.

Thank you for listening!