Tohoku University

Windnauts

Shingo Tsuda Yu Kogure

What is Windnauts?

We make the human powered aircraft (HPA) for participating in the Birdman rally at Biwa lake. We compete distance from taking off to landing on the water surface.

In 2019, 53 members belonged to our team.

Official name	Human-powered flight club
Team name	Windnauts
Starts	1993
Number of people in each grade (1/2/3)	21/18/14

Activity Location of Windnauts

Test Flight (Tohoku Univ.)

We make the HPA and test flight it at Tohoku Univ. Kawauchi Camps.

Activity Location of Windnauts

The distance of srope in Camps is short.

So we also take test flight at Kakuda Gliding Field on every weekend.(in May ~ July)

Tohoku Univ.

The Process to Competition

Design concept

Our Design concept is "Fly Safely and Fast"

Last year, the wing of our aircraft was broken because of bad condition.
Of course, in order to win, it is necessary to fly faster than ever.

So we designed Fast and strong aircraft against the wind

Making

We have 7 teams, and each team makes components in charge.

Wing Team

Fairing Team

Cockpit Team

Steering Team

Drive Team

Avionics Team

Propeller Team

Making Scenery

Making Scenery

Load Test

To check strength of wing beam Take a load 1.5 times as much weight as steady flight.

Test Flight

The purpose of Test Flight is...

- Training of the pilot and the members.
- Check-up of assembly correctness.
- Training of airplane handling.

Test Flight at Kawauchi camps

The main purpose is checking safety of the aircraft and flight short distance.

	<u>cance</u>	· · · · · · · · · · · · · · · · · · ·
	Date	purpose
1 st	June.3	Assembly and Running test
2 nd	June.5	Center of gravity measurement
3 rd	June.9	Thrust control
4 th	June.13	Elevator test
5 th	June.18	Elevator test
6 th	June.21	Elevator and Rudder test
7 th	June.26	Elevator and Rudder test
8 th	July.9	Elevator and Rudder test
9 th	July.11	Elevator and Rudder test
10 th	July.18	Take off practice

Test Flight at Kawauchi camps

Test Flight at Kakuda

The main purpose is training of airplane handling.

Flight relatively long distance and high speed (design speed)

	Date	Purpose
1 st	June.29	 Assembly and Running test Center of gravity measurement Elevator and ladder test
2 nd	July.6	►Canceled
3 rd	July.15	Final Confirmation of AircraftSteady Flight

Test Flight at Kakuda

The incident of 2nd TF in Kakuda

Taking off (The Birdman Rally 2019)

Unstable flight (The Birdman Rally 2019)

Result of The Competition

- 🛣 Date: July. 28, 2019
- Rank: 5th
- Flight distance: 5438.19 [m]
- Flight time: 25 [min]

Rank(preliminary)	Team	Record[m]
1	Birdman House Iga	60,000.00
2	Nihon Univ.	38,010.28
3	Osaka Prefecuture Univ.	19,000.00
4	Altair	5469.96
5	Tohoku Univ.(Windnauts)	5438.19

The reason why result was not good

Lack of pilot steering training (at Kakuda). Cur original schedule of our flight was delayed and replaced with Nihon Univ.

 \rightarrow We are forced to wait 2 hours on platform.(35°C)

 \rightarrow Pilot and our members were exhausted on the platform and the wind became stronger(1~1.5[m/s] \rightarrow 4~4.5[m/s]).

The pitch of aircraft was not stable for some reasons.(wind, skills, weight...)

Summary

Our aircraft cannot fly steadily and long.
We improve aircraft and complete making aircraft quickly and run more tests in Kakuda.
We believe to win the next competition.

Additional Slides

Specifications

Specification		Pro	opeller
Gross weight	82.5[kg]	Airfoil	Milly-Terry(original)
Empty weight	29.5[kg]	Rudius	1.60[m]
Design cruising speed	7.4[m/s]	Rotational speed	135[rpm]
Need Power	218[W]	Thrust power	23.8[N]

Ν	/lain wing			
Airfoil	DAE21-DAE31			
Span of wing	31.0[m]			
Wing area 27.13[m^2]				
Aspect ratio	35.43			
	DAE21	3.8[deg]		
Angle of attack	DAE-21,31	3.8-2.4[deg]		
	DAE-31	2.4-1.2[deg]		
Dihedral angle	4.0[deg]			

Columnar beam made by CFRP

Making columnar beam made by CFRP is most important work of all. So, we set to work it all member. We spend every weekend on making them.

			4450-					
					1500	42- 52		
						43-5-53		
			00			+-250-+		
					990			
-265	φ80MW ply1	2 90deg	12 90deg φ80MW p	ly12 90deg ø80MW	ply12 90deg	φ80MW ply12 90de	9	
	L					•		
		MW nori8 ply1	1					
		4700						
		1100	MW nori7	ply10				
56								
	(2000		MW nori6 ply	/9			
22			4450					
46-	L					MVV n	iori 5 piya	
			4450			MW n	ori4 plv7	
			4450					
ļ						MW	nori3 ply6	
~ 								
9			4450			MW	nori2 ply5	
ļ			4400			, MW	nori1 ply4	
					7300			
184-	680MW ply3	45deg						
	080MW ply2	45deg			,500			
	Cookiev piyz	40009						
		990				990		
ģ	@80MW ply1	o80MW ply1 90deg	φ80MW ply1 90deg	φ80MW ply1 90de	9 @80MW	ply1 90deg		
-26	90deg							

Designing beam efficiency. Arranging each lamination parts on prepreg

Drawing line using pencils and ruler. Cutting follow the line using scissors.

Columnar beam made by CFRP

Lamination Ply1 90° Ply2 0° Ply5~ base on Ply3 45° Ply4 -45°

Cloth is overlaid with prepreg. Cloth absorbs futile epoxy, and beam become light. Surface became rough, and workability are increase.