
FROM THE EARTH Boeing Higher Education Program Year Performance Report

Shu SOKABE¹ Mizuki ABE²

Tohoku University School of Engineering

¹Dept. of Applied Chemistry, Chemical Engineering and Biomolecular Engineering

²Dept. of Mechanical and Aerospace Engineering

Educational activities

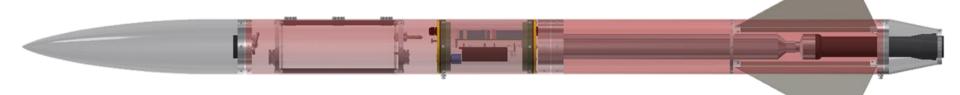
Being held approximately 12 times a year in cooperation with local elementary schools. Our goal is to convey the joy of science to children

Tohoku Type-M Rocket Project

Improvement And inheritance

Basic Development

5 years plan


Reach

5000m

Polaris (IZU Oshima Rocket Experiment)

NAME	TMR-00 Polaris
Length	1915 mm
Diameter	116 mm
Weight	7.049 kg
Expected altitude	781 m
Engine	HyperTEK K240 (835cc)
Maximum speed	116 m/s

Launch purpose

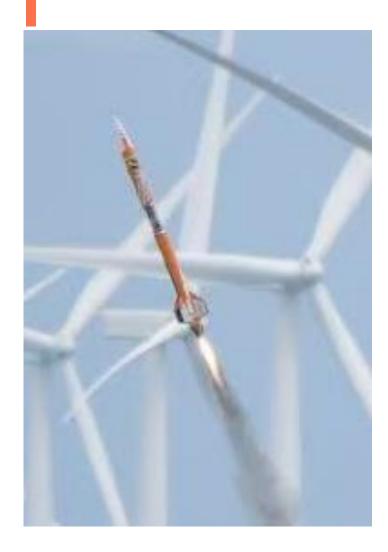
- 1. Establishment of parachute release mechanism
- 2. External power supply by flight pins
- 3. Establishment of waterproof structure
- 4. Improved aerodynamic performance

Result

- · Launch in izu-oshima island (Tokyo)
- The parachute was successfully released
- Almost achieved the purpose and served as a prototype for the TMR project
- Max Altitude :658m
- We are the only team that achieved successful launch in other participating teams

Shaula(Noshiro Space Event August)

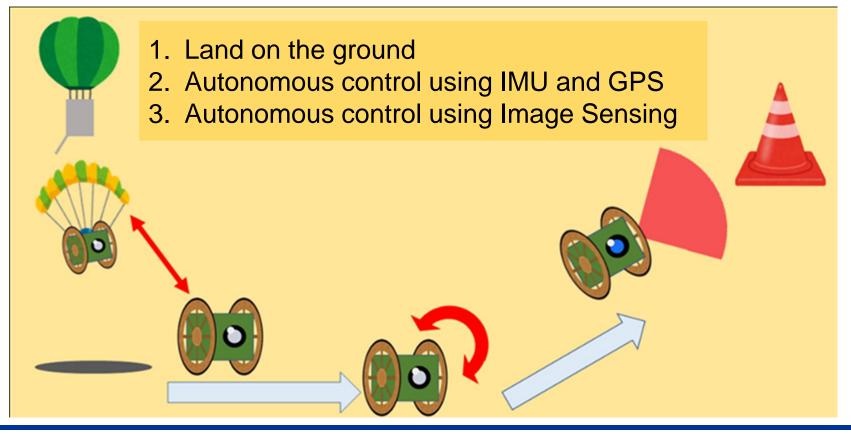
	TMR-01 Shaula
Length	2220 mm
Diameter	116 mm
Weight	8.845 kg
Expected altitude	1655 m
Engine	HyperTEK L350 (1650cc)
Maximum speed	190 m/s



Launch purpose

- 1. Development of leafing
- 2. Use of L-Type engine
- 3. Improved aerodynamic performance

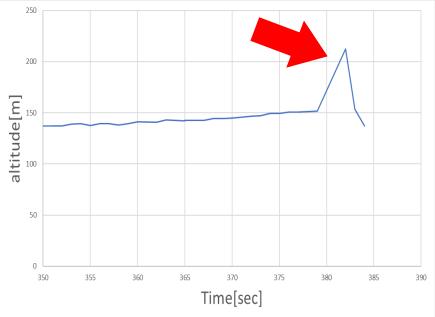
Result


- · Launch in Noshiro-shi (Akita)
- couldn't confirm if the leafing was working
- Successful performance improvement from Polaris
- Height: 1608 m
- Set the highest record for our group
- We also found a place to improve on the next rocket

CanSat project

CanSat: small satellite model for understanding of space tech

Come back competition: land on the field and automatically run to reach a certain position (planetary exploration)


Specification of our CanSat 1 10 1 Power IC Structure FR: ha SBC Sensor • GPS COMM Device Wheel interplan Camera 179mm Length **Control Software** 130mm diameter **Total mass** 752g

Field Test

- Detached parachute inside the career
- Lost stabilizer and felled freely
- Breakage on motor fixture and Malfunction in control due to strong shock
- Autonomous control was not performed on field test
- Cause of parachute failure
 Outlier was detected in
 Pressure sensor
 Unintentional behavior due to
 Disturbance

Evaluation and Future work

 Technological advancement from previous works Structural strength was improved Control software (Proportional control, IMU upgrade)

• Robustness of sensing systems:

Pressure sensor: tolerance on a certain disturbance

Verification process

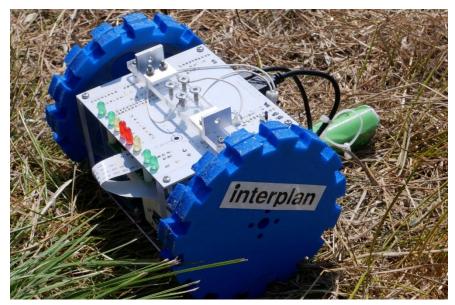
Identification of system requirements and specification was considered in development process

Insufficient verification test due to delay on schedule

(Pressure sensor, field run test)

Advanced Mission

Autonomous control and observation using detached device


Conclusion

Hybrid Rocket
 Improved the
 performance of each
 rocket component and
 increased the altitude
 reached

CanSat

Improvement of Software and Structure was achieved Robustness is the key to advancement of project

