

A study on cluster-based reduced-order model for optimal feedback control of dynamic stall flow

Yuto IWASAKI (Tohoku University, Japan)

Boeing Higher Education Program Year 2020 Performance Report

Background -Dynamic stall-

□ Flow around helicopter blade

- \checkmark Airspeed of blade changes with position
- ✓ AoA changes to keep lift constant
- ✓ Higher AoA is required as speed increases
- \checkmark Dynamic stall occurs in retreating area

Control of dynamic stall flow is required to increase maximum speed of helicopter

Velocity distribution of Helicopter blade

Dynamic stall flow

- \checkmark Flow fields are sensitive to flow condition of pressure, velocity and AoA
- ✓ Different flow is occurred for each rotation

Optimal feedback control that control separation for each condition is the most effective

Background & Objective -Optimal feedback control-

Optimal feedback control

- \checkmark Active flow control device that has high responsibility
 - Plasma actuator
- ✓ Optimal sensor position around airfoil suitable for understanding flow fields
 - Sparse sensor optimization
- ✓ Reduced-order model that predicts future flow fields instantly
 - <u>Cluster-based reduced-order model (CROM)</u>

... low processing time and high accuracy

Optimal feedback control of dynamic stall flow

Objective

We constructed CROM of flow fields around airfoil based on experimental data

Project Plan

Method -Framework of CROM (1)-

Classifying flow fields into cluster

- \checkmark Measure time-resolved velocity distribution of separated flow
- $\checkmark\,$ Separate training data and test data
- ✓ Extract feature value from training data by SVD (Singular Value Decomposition)
- ✓ Classify training data into group of similar flow (clustering) based on feature value

Boeing Higher Education Program

2

Method -Framework of CROM (2)-

□ Estimating cluster number from point velocity (instead of pressure around airfoil)

- \checkmark Find critical sensor position using training data to achieve short processing time
- ✓ Calculate feature value from some point velocity of test data
- \checkmark Estimate cluster number based on feature distribution

Result - Estimation accuracy of CROM-

Construct CROM whose estimation accuracy is approximately 72%

However estimation accuracy is not high

Develop model construction method (especially extracting feature value method) to improve estimation accuracy

SVD (Singular Value Decomposition) \rightarrow DMD (Dynamic Mode Decomposition)

Boeing Higher Education Program

2

Background -Extracting feature structure method-

Σ

SVD (Singular Value Decomposition) Autonne, 1915

Data matrix

 $\mathbf{u}_1 \mathbf{u}_2 \cdots \mathbf{u}_r$ Spatial modes

Amplitude

 σ_1

 σ_2

 σ_r

Temporal modes

Advantage

The lowest reconstruction error

•Orthogonal mode

•Easy to choose mode

Disadvantage

•Periodic phenomena is distributed multiple modes

DMD (Dynamic Mode Decomposition) Schmid, 2010

Previous study

4

mode

DMDsp (sparsity-promoting DMD) ... method to find a small number of dominant mode

Optimization Algorithms

- ✓ ADMM (Alternating Direction Method of Multipliers) ... Adjustment of parameter is required to speed up
- ✓ Greedy method ... Sequential optimization algorithm
- ✓ FISTA (Fast Iterative Shrinkage Thresholding Algorithm) ... Fast algorithm

	ADMM	Greedy method	FISTA
sDMDsp	Jovanovic, 2014	Ohmichi, 2017	×
oDMDsp	×	Ohmichi, 2019	×

4

We apply FISTA to two kinds of DMDsp to realize fast processing time

Performance evaluation of algorithms

- ✓ Data : random data matrix
- ✓ Algorithm : FISTA, ADMM, Greedy method
- ✓ Metrics of performance evaluation : Processing time, Evaluation term (Reconstruction error)

DMDsp -Optimization algorithm-

	FISTA	ADMM	Greedy method
Advan tage	Fast convergence	Easy to apply	Optimizing number of modes and amplitude
Disadv antage		Adjustment of <i>ρ</i> is required to speed up	
Algorit hm	input $\mathbf{x}[0] = 0$ $\mathbf{z}[0] = 0$ $t[0] = 1$ while do until convergence $\mathbf{x}[k+1] = S_{\gamma\lambda} \left(\mathbf{z}[k] - \gamma \nabla J \left(\mathbf{x}[k] \right) \right)$ $t[k+1] = \frac{1 + \sqrt{1 + 4t[k]^2}}{2}$ $\mathbf{z}[k+1] = \mathbf{z}[k] + \frac{t[k] - 1}{t[k+1]} \left(\mathbf{x}[k+1] - \mathbf{x}[k] \right)$ $-k = k + 1$ $S_{\gamma\lambda}$: Soft thresholding operator output \mathbf{z} γ : Convergence acceleration rate (Optimal)	input $\mathbf{z}[0] = 0 \mathbf{v}[0] = 0$ while do until convergence $\mathbf{x}[k+1] = \operatorname{argmin}_{\mathbf{x}} J(\mathbf{x}) + \frac{\rho \ \mathbf{v}[k] + \mathbf{x} - \mathbf{z}[k]\ _{2}^{2}}{2}$ $z_{i}[k+1] = S_{\frac{\gamma}{\rho}} \left(x_{i}[k+1] + \frac{v_{i}[k]}{\rho} \right)$ $\mathbf{v}[k+1] = \mathbf{v}[k] + \rho \left(\mathbf{x}[k+1] - \mathbf{z}[k+1] \right)$ k = k + 1 output \mathbf{z} ρ : Convergence acceleration rate (minimum)	input κ while do $r < K$ $j_0 = \operatorname{argmin} J(S^r \cup j), j \notin S^r$ $S^{r+1} = S^r \cup j_0$ r = r + 1 Output S K: Number of modes

Data matrix

4

Random data matrix ... evaluate algorithm performance independent to data

- ✓ Data size (column) : 1000
- ✓ Data size (row) : 100

✓ Value : Random numbers according to standard normal distribution

(Average: 0 Dispersion: 1)

✓ Number of data : 100

oDMDsp applying FISTA and ADMM realize faster processing time than Greedy method

We constructed CROM whose estimation accuracy was 72% of flow fields around airfoil based on experimental data

We applied FISTA to two kinds of DMDsp and realized faster processing time than DMDsp applying conventional algorithms

Evaluation of algorithm performance

✓ sDMDsp

- Processing time
- Evaluation term (Few modes)
- Evaluation term (Many modes)
- ✓ oDMDsp
 - Processing time
 - Evaluation term (Few modes)
 - Evaluation term (Many modes)

- : FISTA < ADMM << Greedy method
- : Greedy method \leq FISTA = ADMM
- : Greedy method < FISTA = ADMM
- : FISTA < ADMM << Greedy method
- : Greedy method \leq FISTA = ADMM
- : Greedy method < FISTA = ADMM