Deep Learning Techniques for Aerodynamic Wing Shape Optimization

Alfiyandy Hariansyah^{1,2}

¹ Department of Aerospace Engineering, Tohoku University, Sendai, Japan ² Institute of Fluid Science, Tohoku University, Sendai, Japan

Boeing Higher Education Program Seminar Year 2021-2022 Performance Report

Sendai, February 16, 2023

Contents

- Introduction
 - Why deep learning in wing design?
 - Problems with the conventional method
 - Objectives
- Problem formulation
 - A lift-constrained drag minimization of the Common Research Model (CRM) wing
- Methodologies
 - MLP-based surrogate modeling
 - DCGAN-based sampling
 - CNN-based geometric filtering
 - CFD and mesh deformation
 - Computational resources
- Results and discussion
 - Optimization history and surrogate model's accuracy
 - Optimal solutions comparison
 - CFD visualization
 - Is a 0.5 count improvement from the baseline worthwhile?
- Conclusions

TOHOKU

Methodologies

Problems with the conventional method

TOHOKU

 The conventional way has been using sampling methods like Latin hypercube sampling (LHS) in the Design of Experiment + local perturbation.

Selects *N* orthogonal blocks (not overlapped in all dimensions) from *N*ⁿ blocks (divided into *N* equally probable intervals in each dimension), and samples 1 point randomly in each selected block → Comprehends the whole space even with a smaller sample size

In high-dimensional problems (high flexibility)

• The problems we try to solve:

- Expensive fluid analysis
- Curvy initial designs
- Inaccurate surrogate models

LHS sampling via FFD local perturbation

Hariansyah 2023

Objectives

тоноки

To improve the efficiency of the conventional surrogate-based optimization (SBO) method by reducing the required number of CFD analysis while obtaining more optimal design (faster design cycle).

To develop:

- Multilayer perceptron
- Deep Convolutional Generative Adversarial Network
- Convolutional Neural Network

Applied to:

 High-dimensional Aerodynamic Shape Optimization of the Common Research Model Wing

Hariansyah 2023

Contents

- Introduction
 - Why deep learning in wing design?
 - Problems with the conventional method
 - Objectives

Problem formulation

- A lift-constrained drag minimization of the Common Research Model (CRM) wing
- Methodologies
 - MLP-based surrogate modeling
 - DCGAN-based sampling
 - CNN-based geometric filtering
 - CFD and mesh deformation
 - Computational resources
- Results and discussion
 - Optimization history and surrogate model's accuracy
 - Optimal solutions comparison
 - CFD visualization
 - Is a 0.5 count improvement from the baseline worthwhile?
- Conclusions

Baseline geometry and parameterization

- A Common Research Model (CRM)¹ wing-alone is used as the baseline.
- Free Form Deformation (FFD) implemented in pyGeo² is used for parameterization.
- By perturbing the FFD points in z-direction, a new wing geometry can be obtained.

Vassberg et al., 26th AIAA Applied Aerodynamics Conference, 2008.
 <u>https://github.com/mdolab/pygeo</u>

8 sections x **24** points = **192** FFD points embedding the baseline.

TOHOKU

Optimization problem formulation

- We want to minimize aerodynamic drag
 - Changing AoA and FFD control points
 - Meeting constraints (lift, moment, geometries)

	Function/variable	Description	Quantity
Minimize	CD	Drag coefficient	1
With respect to	α	Angle of attack	1
	Δz	FFD control point displacements	192
		Total design variables	193
Subject to	$C_{L} = 0.5$	Lift coefficient constraint	1
	$C_{My} \geq C_{My,base}$	Moment coefficient constraint	1
	$V \ge 0.8 V_{base}$	Minimum FFD volume constraint	1
	$\Delta \mathbf{Z}_{TE,upper} = -\Delta \mathbf{Z}_{TE,lower}$	Fixed trailing edge constraints	8
	$\Delta \mathbf{Z}_{LE,upper} = -\Delta \mathbf{Z}_{LE,lower}$	Fixed leading edge constraint	1
		Total constraints	12

FFD boundaries of the 3rd spanwise section

> 100 design variables high-dimensional!

Contents

- Introduction
 - Why deep learning in wing design?
 - Problems with the conventional method
 - Objectives
- Problem formulation
 - A lift-constrained drag minimization of the Common Research Model (CRM) wing
- Methodologies
 - MLP-based surrogate modeling
 - DCGAN-based sampling
 - CNN-based geometric filtering
 - CFD and mesh deformation
 - Computational resources
- Results and discussion
 - Optimization history and surrogate model's accuracy
 - Optimal solutions comparison
 - CFD visualization
 - Is a 0.5 count improvement from the baseline worthwhile?
- Conclusions

ТОНОКИ

MLP-based surrogate modeling

- MLP: Multilayer Perceptron
- Computational Fluid Dynamics → expensive
- MLP provides fast analytical prediction as a surrogate, instead of CFD.

Methodologies

DCGAN-based sampling (1/2)

- Deep Convolutional GAN (DCGAN): a type of GAN³ that consists of only convolutional layers.
- We trained the DCGAN using the 77 transonic airfoils from the UIUC database.
- After training, the G model can produce synthetic airfoil coordinates from 100-dimensional noise.

Goodfellow et al., Advances in Neural Information Processing Systems, 2014.
 Or-El et al., <u>https://arxiv.org/pdf/2003.09764.pdf</u>

Airfoil transformation from a noisy input by our GAN

Fake images produced by a GAN⁴ Lifespan Age Transformation Synthesis

DCGAN-based sampling (2/2)

Methodologies

Conclusions

CNN-based geometric filtering

- CNN: Convolutional Neural Network
- We trained it using 500 smooth and curvy samples.
- Smooth score label \rightarrow 1
- Curvy score label → 0

	Downsampling	
FFD points displacements		Probability
	D model	

 After training, the CNN can detect the shape abnormality by giving a probability score.

Smooth → scores near one Curvy → scores near zero

Credit: Yanjia Li, towardsdatascience

The entire design framework

Computational resources

- CFD analyses are parallelly performed in an AFI System⁵ of the *Institute of Fluid Science, Tohoku University.* Each analysis took 30 minutes on an Intel Xeon Gold 6148 2.4GHz with 40 processors.
- Deep learning models are trained on a local computer with 2xGPU RTX3070. MLP training took an order of seconds, while CNN and DCGAN training took an order of minutes to hours.

5. <u>http://www.ifs.tohoku.ac.jp/~afirc/afirc_eng/supercomputer/</u>

Contents

- Introduction
 - Why deep learning in wing design?
 - Problems with the conventional method
 - Objectives
- Problem formulation
 - A lift-constrained drag minimization of the Common Research Model (CRM) wing
- Methodologies
 - MLP-based surrogate modeling
 - DCGAN-based sampling
 - CNN-based geometric filtering
 - CFD and mesh deformation
 - Computational resources
- Results and discussion
 - Optimization history and surrogate model's accuracy
 - Optimal solutions comparison
 - CFD visualization
 - Is a 0.5 count improvement from the baseline worthwhile?
- Conclusions

700

0.050

0.025

0.000

CNN geo filter \rightarrow speeds up convergence

and improves the model's accuracy

200 300 400 500 600 700 800 900 1000

Optimization history and surrogate model's accuracy

тоноки

- Experiments:
 - 1. LHS: using Latin hypercube sampling
 - 2. DCGAN: using the DCGAN technique
 - 3. DCGAN+GF: using the DCGAN+CNN technique

Penalized objective = $10,000 \times C_D + 1000 \times |0.5 - C_L| + 1000 \times |\min(C_M - C_{M,base}, 0.0)|$

The DCGAN+CNN improves the optimization performance.

mance. LHS: conventional DCGAN: proposed 1 DCGAN+GF: proposed 2

Number of CED evaluation

Methodologies

Optimal solutions comparison

- The **DCGAN-only** → 8 counts less drag than the LHS.
- The DCGAN+GF → 23 counts less drag the DCGAN-only.
- The lowest drag solution → 1 count less drag than the baseline but violating the moment constraint.
- The best feasible \rightarrow **0.5 count** less drag than baseline.

DRAG COEFFICIENT

			Feasibl	e best	Infeasible
	Baseline	LHS	DCGAN	DCGAN+GF	DCGAN+GF (lowest drag)
Design	-	G127S1	G112S3	G139S5	G136S2
C _D (counts)	212.745	243.160	235.179	212.261	211.788
CL	0.500	0.499	0.500	0.500	0.500
C _{My}	-0.181	-0.168	-0.174	-0.176	-0.182
AoA	2.212°	2.286°	2.267°	2.207°	2.217°
FFD Volume	0.689	0.722	0.709	0.700	0.687
Wing Volume	0.231	0.232	0.232	0.230	0.230
	CC	onventional	pro	posed	

CFD: Baseline vs DCGAN+GF best feasible (1/2)

DCGAN+GF best feasible has

- ٠
- **0.5 count** less drag than baseline Less intense shock at 0 45% spanwise location

CFD: Baseline vs DCGAN+GF best feasible (2/2)

DCGAN+GF optimal design exhibits a **bifurcated** shock region, resembling a λ -configuration.

Is a 0.5-count improvement from the baseline worthwhile?

Comparing our results with other researchers

Researcher	Improvement (drag count)	Number of design vars (FFD points)	CFD samples	Using adjoint	Optimizer
My case [6]	0.5	8 x 24 = 192	1000	No	Gradient-free
Li et al. [7]	0.7 – 2.0	8 x 24 = 192	1000	Mixed	Gradient-based
Lyu et al. [8]	16.0	15 x 48 = 720	800	Yes	Gradient-based

- To get a better result, we should revise the problem formulation (as part of the design cycle): increase the FFD points, etc.
- CRM wing is already a good-performing design to start with, developed by experts.
- Our project focuses on proving the efficacy of the deep learning techniques in improving the efficiency of gradient-free adjointfree surrogate-based optimization (SBO) methods with LHS.

6. Hariansyah et al., *Proceedings of the 33rd Congress of ICAS*, 2022.
7. Li et al., *AIAA Journal*, Vol. 59, No. 6, 2021.
8. 10. Lyu et al., *AIAA Journal*, Vol. 53, No. 4, pp 968-985, 2015.

Contents

- Introduction
 - Why deep learning in wing design?
 - Problems with the conventional method
 - Objectives
- Problem formulation
 - A lift-constrained drag minimization of the Common Research Model (CRM) wing
- Methodologies
 - MLP-based surrogate modeling
 - DCGAN-based sampling
 - CNN-based geometric filtering
 - CFD and mesh deformation
 - Computational resources
- Results and discussion
 - Optimization history and surrogate model's accuracy
 - Optimal solutions comparison
 - CFD visualization
 - Is a 0.5 count improvement from the baseline worthwhile?
- Conclusions

тоноки

Concluding remarks

PROBLEMS

We are facing:

- CFD analysis is expensive.
- Latin hypercube sampling (LHS) + FFD produces designs with curvy surfaces.
- In high-dimensional case, it's difficult to build an accurate surrogate model.

SOLUTIONS

We introduced:

- MLP-based surrogate modeling
- DCGAN-based sampling

CNN-based geometric filtering

Used together, the above techniques could speed up the optimization convergence.

Thank you for your support!

Deep learning techniques summary

DCGAN+GF Optimization

DCGAN Optimization

LHS Optimization

Methodologies

Backup slides (1/8): Project plan

Backup slides (2/8): CFD and mesh deformation

- A finite-volume RANS CFD solver (ADflow⁹) from MDOLab is used.
- Flight conditions:
 - Mach 0.85, $Re = 5 \times 10^6$
 - Fixed $C_L = 0.5$
 - AoA initial guess = 2°
- Given displacements in FFD points, the baseline mesh is deformed using IDWarp¹⁰ to produce a new volume mesh for the new design.

<u>https://github.com/mdolab/adflow</u>
 <u>https://github.com/mdolab/idwarp</u>

The baseline mesh with approximately 450 thousand cells

Backup slides (3/8): DCGAN vs LHS initial samples distribution

Backup slides (4/8): CFD: LHS vs DCGAN initial samples

DCGAN initial samples \rightarrow smoother than LHS initial samples \rightarrow better aerodynamic performance

Backup slides (5/8): DCGAN vs LHS optimal solutions

Backup slides (6/8): 3D shock visualization

Methodologies

Backup slides (7/8): curvatures

Backup slides (8/8): parameters

Creation of the second

Layers	G model (deconv	volutional)	D model (convolutional)		
	Number of kernels	Kernel size	Number of kernels	Kernel size	
First layer	80	10	10	10	
Second layer	40	10	20	10	
Third layer	20	10	40	10	
Fourth layer	10	10	80	10	
Fifth layer	1	11	1	10	

Table 2 - Details of DCGAN architecture.

Table 3 - Parameters for the NSGA-II.

Population size	100	
Max number of generations	250	
Crossover	$\eta_{\rm c}$ = 15, rate = 0.9	
Mutation	$\eta_{\rm m}$ = 15, rate = 0.01	