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Introduction

Why deep learning in wing design?

Initial design

explore many wing shape configs
: . Problem
and aerodynamically find the best one :
formulation

High-fidelity CFD for i —
fluid analysis is expensive / °pt'm'zat'°m

(hours/days for one design)

Need for: [ ]

a fast and accurate fluid analysis
K NO /

= a more efficient design cycle

!

Deep Learning

Final design
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Introduction

Problems with the conventional method

= The conventional way has been using sampling In high-dimensional problems
methods like Latin hypercube sampling (LHS) in (high flexibility)
the Design of Experiment + local perturbation.
Curvy and abnormal initial
[ designs by the LHS. }

‘ hard to model

= The problems we try to solve: [ Inaccurate surrogate models.}
* Expensive fluid analysis
e Curvy initial designs
Vici due to the
* Inaccurate surrogate models icious _
Cycle inaccuracy

Abnormal infill designs that
» don’t add meaningful

information to the models.
hard to model

LHS sampling
via FFD local perturbation
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Introduction

Objectives

To improve the efficiency of the conventional surrogate-based optimization (SBO)
method by reducing the required number of CFD analysis while obtaining
more optimal design (faster design cycle).

To develop:

= Multilayer perceptron

= Deep Convolutional Generative Adversarial Network
= Convolutional Neural Network

Applied to:
* High-dimensional Aerodynamic Shape Optimization of
the Common Research Model Wing

Optimization history for DCGAN+GF

kth artificial neuron
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Problem Formulation

Baseline geometry and parameterization

= A Common Research Model (CRM)?
wing-alone is used as the baseline.

* Free Form Deformation (FFD) implemented
in pyGeo? is used for parameterization.

= By perturbing the FFD points in z-direction,
a new wing geometry can be obtained.

FFD in pyGeo 8 sections x 24 points = 192 FFD

, , points embedding the baseline.
1. Vassberg et al., 261" AIAA Applied Aerodynamics Conference, 2008.

2. https://github.com/mdolab/pygeo
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Problem Formulation

Optimization problem formulation

=  We want to minimize aerodynamic drag
» Changing AoA and FFD control points A f

» Meeting constraints (lift, moment, geometries) ‘\f

FFD boundaries of the
3rd spanwise section

> 100 design variables
high-dimensional!
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Methodologies

MLP-based surrogate modeling

= MLP: Multilayer Perceptron
= Computational Fluid Dynamics = expensive

= MLP provides fast analytical prediction as a surrogate, instead of CFD.

FFD
points
design
variables
(wing shape)
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Methodologies

DCGAN-based sampling (1/2)

= Deep Convolutional GAN (DCGAN): a type of GAN3 that
consists of only convolutional layers.

0.25

0.00

= We trained the DCGAN using the 77 transonic airfoils
from the UIUC database.

—0.25
—0.50

—0.75 4

= After training, the G model can produce synthetic airfoil ‘o
coordinates from 100-dimensional noise.

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Airfoil transformation from a
noisy input by our GAN

100-d Airfoil Airfoil .
noisy input coordinates coordinates Probability
G model D model
Fake images produced by a GAN#
Lifespan Age
3. Goodfellow et al., Advances in Neural Information Processing Systems, 2014. Transformation Synthesis
4, Or-El et al., https://arxiv.org/pdf/2003.09764.pdf
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Methodologies

DCGAN-based sampling (2/2)

(all al2 . . . aln] .
w21 a22 . . aon | 8%100random noises
laml am2 . . . amn]

3

DCGAN-based sampling 5 1 2

1) Produce 8 x 100 random noises .-;I-“i‘.:;;\, )g\
r NN Y

2) Produce 8 airfoils using G model IR ’

3) Wing representation v"{' ’.;.:;f /

4) Perform Algorithm 1 f /

. . 4 Surrogate Model
5) Obtain the FFD points FED of DCGAN wing \{J
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Methodologies

CNN-based geometric filtering

= CNN: Convolutional Neural Network SCaaN vings

LHS Wings
UIUC Wings

= We trained it using 500 smooth and curvy samples.

Density

FFD points

=  Smooth score label 2> 1 b
displacements Probability

= Curvy score label > 0 21
D model

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
CNN_Geo_Filter Score

= After training, the CNN can detect the shape abnormality

Smooth = scores near one

by giving a probability score. Curvy = scores near zero
DCGAN airfoils LHS airfoils
o oo ocooo s > > > oo >
o oo oo > >
oCcCcocC oo o oCcC > > S O
coococoooc o o > C> o > > O > K >
CcCoCoOooc oo e o T >
oo ococCooococ o > > O
oo o oo oo > > O O
oCcoOoOoc oo CeC e >
oo oo ocC oo oo > > O > O 90% cat
oo ocoococo o> > 10% dog
oo oo oo > e .
SoErEr i er e e e G Image classification by CNN
realistic abnormal Credit: Yanjia Li, towardsdatascience
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Methodologies

The entire design framework

- DCGAN- -

based o
sampling -
Iter=1 e

C C

U

3. True evaluations
} .
(CFD, analytical 4. Design database

1. Wing parameterization 2. Design of experiment functions) J—L ’
i i

2

Believer sub-iteration B

% 5. MLP-based surrogate

model construction E G en et | C

] ' algorithm
NSGA-II

10. New design (infilling)

i 8. Append predicted
False ! candidate data J L

7. Believer
max iter?

9. Stopping
criterion

11. Optimized design 6. Sub-optimization using

NSGA-II on the model

a value that reduces the CNN-
design space for a more based
accurate modeling Analytical constraint filter

S 2 Scut—off - 04

Bad,
Feasible

Infeasible
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Methodologies

Computational resources

= CFD analyses are parallelly performed in
an AFl System? of the Institute of Fluid
Science, Tohoku University. Each analysis
took 30 minutes on an Intel Xeon Gold
6148 2.4GHz with 40 processors.

5. http://www.ifs.tohoku.ac.jp/~afirc/afirc eng/supercomputer/

Deep learning models are trained on a local
computer with 2xGPU RTX3070. MLP training
took an order of seconds, while CNN and DCGAN
training took an order of minutes to hours.
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Results and Discussion

Optimization history and surrogate model’s accuracy

=  Experiments:

N
1. LHS: using Latin hypercube sampling |1 ~ ,
2. DCGAN: using the DCGAN technique RMSE = N;(y‘ vi)
3. DCGAN+GF: using the DCGAN+CNN technique

Optimization history (minimum feasible solution)

Penalized objective = 10,000 x Cp, + 1000 X [0.5 — C| + 1000 X |[min(Cy; — Cprpase, 0.0)|

600 1 &

— LHS
—— DCGAN
—— DCGAN+GF
600 1 —-- Baseline
= The DCGAN+CNN improves the optimization performance. z
95004
Penalized objective function vs No of true eval g
T . ST LHS: conventional
1400 A ‘e 5
o e DCGAN .
S ]  occanser | DCGAN: proposed 1
R LT DCGAN+GF: proposed 2 | —— — B—
g ¢ 200200 360 460 560 660 760 860 960 10‘00
8 ° Number of CFD evaluations
< 10007,
% RMSE of drag coefficient RMSE of moment coefficient
F 800 1 7 — oo 7 — oo
o 0.1504 —— DCGAN+GF 0.150 4 —— DCGAN+GF
8 —=—~ Perfectly accurate —=—~ Perfectly accurate
N 0.1251 0.1251
©
o
()
[« 9

0.1001 0.1001

w w
@ @
= =
= 0.0754 % 0.075
400
0.050 1 0.0501
0.0251 0,025 1
200 *
T T T T T T 0.0001 ---- 0.0004 =----
0 200 400 600 800 1000 200 300 400 500 600 700 800 900 1000 200 300 400 500 600 700 800 900 1000

Number of CFD evaluations Number of CFD evaluation Number of CFD evaluation

. - CNN geo filter = speeds up convergence
initial samples infill samples . )
and improves the model’s accuracy
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Results and Discussion

Optimal solutions comparison

= The DCGAN-only - 8 counts less drag than the LHS. DRAG COEFEICIENT
= The DCGAN+GF > 23 counts less drag the DCGAN-only. BASELINE
LHS
= The lowest drag solution = 1 count less drag than the ocean PRI
baseline but violating the moment constraint. DCGAN+GF 8 counts

DCGAN+GF (LOWEST CD) 23 counts
" The best feasible = 0.5 count less drag than baseline.

Feasible Infeasible
| best

conventional proposed
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Results and Discussion

CFD: Baseline vs DCGAN+GF best feasible (1/2)

DCGAN+GF best feasible has
* 0.5 count less drag than baseline <« Less intense shock at 0 — 45% spanwise location

i 1 1 i : 235% | 26.7%

c, -1 -075 -05 025 0 025 05 075 1

p

DCGAN+GF
Baseline G139S5
C,=0.021274 C, =0.021226
C, =0.500 C, =0.500
CMy=—0.181 CMy=-0.176

55.7% 69.5%

— _ 82.8% | . 94.4%

1 - Elliptical

|
T,
+

Normalized lift
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Results and Discussion

CFD: Baseline vs DCGAN+GF best feasible (2/2)

DCGAN+GF optimal design exhibits a bifurcated shock region, resembling a A-configuration.

Hariansyah 2023 CFD: Best feasible



Results and Discussion

Is a 0.5-count improvement from the baseline worthwhile?

= Comparing our results with other researchers

Improvement | Number of design Using
D
LG (drag count) vars (FFD points) dielulu i adjomt

My case [6] 8x24 =192 1000 Gradient-free
Li et al. [7] 0.7-2.0 8x24 =192 1000 Mixed Gradient-based
Lyu et al. [8] 16.0 15x48 =720 800 Yes Gradient-based

Initial design
= To get a better result, we should revise the problem formulation ' =
(as part of the design cycle): increase the FFD points, etc.

Problem
formulation

= CRM wing is already a good-performing design to start with,
developed by experts.

Optimizatiorm

= Qur project focuses on proving the efficacy of the deep learning
techniques in improving the efficiency of gradient-free adjoint-
free surrogate-based optimization (SBO) methods with LHS.

6. Hariansyah et al., Proceedings of the 33" Congress of ICAS, 2022. Good =76 s
7. Li et al., AIAA Journal, Vol. 59, No. 6, 2021. design?
8. 10. Lyu et al., AIAA Journal, Vol. 53, No. 4, pp 968-985, 2015.
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Conclusions

Concluding remarks

PROBLEMS SOLUTIONS
We are facing: We introduced:
= CFD analysis is expensive. - = MLP-based surrogate modeling

= Latin hypercube sampling (LHS) + FFD - = DCGAN-based sampling
produces designs with curvy surfaces.

= |n high-dimensional case, it’s difficult = CNN-based geometric filtering
to build an accurate surrogate model.

Used together, the above technigues could speed up the optimization convergence.
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Deep learning technigues summary

a. Multilayer perceptron

» Replace CFD in the GA
process, reducing the
turnaround time

Input Hidden Hidden Hidden Output
Layer Layer 1 Layer 2 Layer 3 Layer

kth artificial neuron

b. DCGAN-based sampling

» Provide good initial designs
(smoother wing surfaces
and better performance)

oo oo oo oc e
oo oo o>
DCGAN cocoocococ oo o o
e e . oo O o O
Airfoils ——ccccc oo
oo oo oo
oo oooc oo o s
realistic “cc oo oo oo
oo o oo Cc
oo oo OO o
oo o O
>
o O

LHS > G

Airfoils =~ 2 S 2 2 2 S

ab- > >

normal & -~ o oo oo

c. CNN-based filtering

» Shrink the design space,
increasing the surrogate
model’s accuracy

FFD points

displacements Probability

D model

Bad,
Feasible

Analytical
constraint

Sz Scut—off

Infeasible




DCGAN+GF Optimization

Cptimization history for DCGAN+GF

700 4

600

300 A

DCGAN+GF G2S1

400 1
Eval number = 201

Drag coetficient {(count)

300
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—-==- Baseline

200
200

O ey ol afy iy )y e O i ) B 8

T T T T T T T T
300 400 500 a0 o0 800 400 1000
Mumber of CFD evaluations

Snapshot of the best feasible design

DCGAN+GF G50
Eval numbar = 241

A DFs ns D23 0 0Rs 05 075 1
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DCGAN Optimization

Optimization history for DCGAN

+  DCGAN Solution
—— DLCGAN Best Feasible 5ol
~—- Baseline

1400 4

1200

1000 4

800 4

DCGAN G251
Eval number = 201

Drag coefficient (count)

600

400

T T T T -
200 300 400 500 o900 700 gao0 900 1000
Number of CFD evaluations

Snapshal of the besi feasible design

DCGAN G230
Eval number = 201

Gt 0:0.75: -0.5:-0.28 0 02505 0.75 1

C, -1 075 0§ 025 0 025 05 075 |



LHS Optimization

Optimization history for LHS

1400 4

12004

1000 4

LHS G251
Eval number = 201

BOD

Drag coefficient (count}

600

400

N e e o S e T

+  LH5 Solution
—— LHS Best Feasible Sol
—--- Baseling

200 300 440 00 600

Snapshot of the besl feasible design

LHS G250

Ewval number - 201

L
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w1 075 05 025 0 0256 05 075 1
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00 200 q00 100
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Backup slides (1/8): Project plan

1. Geometry : 6. Multi~paint wing
.. 4. Aero-str al analysis .
parameterization optimization
Aero-structural
e : optimization of
ol 2. Optimization pipeline and automation ) ) )
Original aircraft wings via
E|an neural network-
3. Multilayer ] e ) assisted genetic
perceptron 5. Single-point wing 7. Adding more cases aleorithm
development optimization and data g
2021/9 2021/12 2022/3 2022/6 2022/9

4. Aerodynamic-only 8. Scientific outreach

analysis automation (conferences) Deep learning
oo > |[CAS 2022 in Sweden i
MOdIfIEd e techr"ques for
E'an 6. Developing other deep aeTOdynamlc
learning techniques: DCGAN er'\g ?.hape
and CNN for faster design cycle optimization

Hariansyah 2023 Backup slides (1/8)



Backup slides (2/8): CFD and mesh deformation

= A finite-volume RANS CFD solver
(ADflow?) from MDOLab is used.

= Flight conditions:
* Mach 0.85, Re =5 x 10°
* FixedC,=0.5
e AOA initial guess = 2°

= Given displacements in FFD points,
the baseline mesh is deformed
using IDWarp*° to produce a new
volume mesh for the new design.

9. https://github.com/mdolab/adflow The baseline mesh with approximately
10. https://github.com/mdolab/idwarp 450 thousand cells
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Backup slides (3/8): DCGAN vs LHS initial samples distribution

Initial samples

1400 - e LHS- FeaS|b.Ie
X  LHS - Infeasible
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Backup slides (4/8): CFD: LHS vs DCGAN initial samples

DCGAN initial samples = smoother than LHS initial samples = better aerodynamic performance

26.7%

c, -1 -075 -05 -025 0 025 05 075 1

p

LHS - G18177 DCGAN - G15105
C, = 0.062839 C, =0.033839
C_=0.504 C_=0.497

vy = 0. Cyy, =-0.149

94.4%

Normalized lift - : -
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Backup slides (5/8): DCGAN vs LHS optimal solutions

2.35%

¢, -1 -075-05-025 0 025 05 075 1

LHS - G127S1 DCGAN - G112S3

C, =0.024316 C, =0.023518 7
C_=0.499 C,_=0.500 :
C,,, =-0.168 Cy, =-0.174 .

55.7% | . 69.5%

—— - . 82.8%

Normalized lift

Hariansyah 2023 Backup slides (5/8)



Backup slides (6/8): 3D shock visualization
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Backup slides (7/8): curvatures

Airfoil Upper Profile

0.05 A
Suction side of the wing section 2.35% span

0.00 -

—0.05 1

Z-coordinate

—0.10 1

0.0 0.2 0.4 0.6 0.8 1.0
Curvature

Smaller k

Curvature value

] 5 o\ —1.5
—— Baseline d Z dZ
-4 -—-- DCGAN+GF G13652 K(x) = W 1+ a

—— DCGAN+GF G139S5

0.0 0.2 0.4 0.6 0.8 1.0
Normalized X-coordinate
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Backup slides (8/8): parameters
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