Experimental and numerical investigations of flame pattern formations in a radial microchannel

Aiwu Fan^{1,3}, <u>S. Minaev²</u>, E. Sereshchenko², R. Fursenko², S. Kumar⁴, W. Liu³, K. Maruta¹

¹Institute of Fluids Science, Tohoku University, Japan ² Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Russia ³Huazhong University of Science & Technology, Wuhan, China ⁴Aerospace Engineering Department, IIT Bombay, Powai, Mumbai, India

application to microsystems

Heat regeneration

Heat regeneration

"Swiss-roll" micro-combustor

Advanced fundamental problem: Flame propagation in small channel with temperature gradient in the wall ____3

Previous study

Simplest configuration – straight quartz tube with wall temperature gradient tube diameter < critical diameter FREI - Flames with Repetitive Extinction and Ignition

Small velocities

Nonuniform flow in the channel with wall temperature gradient

Flame stabilization in divergence flow behind channel narrowing

Example:

In MIT gas turbine combustion occurs in radial flow

Topical question

Description of flame propagation and stabilization in the divergence radial flow in microchannel with temperature gradient

Radial flow between parallel disks

Objectives

- 1. To investigate flame pattern formation in heated microchannel with radial flow, especially in the case corresponding to FREI phenomena.
- 2. How does gas flow rate affect on the flame pattern?
- 3. How does mixture content affect on the flame pattern?
- 4. To try reproduce experimentally observed patterns within frame of simple thermo-diffusion model. This modeling may be considered as preceding study before modeling with detailed chemistry and real flow characteristics to outline flame patterns diagram.

Experiments in radial channel with temperature gradient in the wall

Scheme of the experiments

*№*6

Experimental installation

Flame recording: image-intensified high-speed digital camera

Flame pattern regime diagram

*№*7

Flame radial location vs inlet mixture velocity stoichiometric CH₄ –air mixture

Experimental results

Regime diagram

____8_

Flame radial location vs inlet mixture velocity stoichiometric CH₄–air mixture

Experimental results

Linear stability analysis of stationary solutions

Species conservation:

Oxidizer

$$\frac{\partial(\rho Y_o)}{\partial t} + \left(\vec{V} \cdot \nabla\right)(\rho Y_o) = D\Delta(\rho Y_o) - \nu W(Y_o, Y_f, T)$$
(2)

Fuel

$$\frac{\partial(\rho Y_f)}{\partial t} + \left(\vec{V} \cdot \nabla\right)(\rho Y_f) = D\Delta(\rho Y_f) - W(Y_o, Y_f, T)$$
(3)

Chemical Reaction Rate

$$W(Y_o, Y_f, T) = \rho A Y_o^a Y_f^b \exp\left(-E/RT\right)$$
⁽⁴⁾

Boundary conditions and grid

Computation domain: $r_0 < r < R_0$, $r_0 = 2 \text{ mm}$, $R_0 = 40 \text{ mm}$

Non-uniform Grid: 1500 (radial points) × 350 (angular points) nodes.

Wall temperature profile:

$$r_0 < r < r_1: \qquad \theta = T_0 + (\Theta - T_0) \frac{r - r_0}{r_1 - r_0}$$
$$r_1 < r < R_0: \qquad \theta = \Theta$$
$$r_1 = 25 \text{ mm}, \quad \Theta = 900 \text{ K}$$

Boundary conditions for the inlet and exit:

at the inlet
$$(\mathbf{r} = \mathbf{r}_0)$$
: $T = T_0, Y_f = Y_f^0, Y_o = Y_o^0$
at the exit $(\mathbf{r} = \mathbf{R}_0)$: $\nabla T = \nabla Y_f = \nabla Y_o = 0$

Computation scheme: implicit finite–difference scheme

(Nº11

Results of numerical simulations

Shade graded fuel concentration distribution. Pink color – initial fuel concentration. Blue domain –zero fuel concentration Shade graded temperature distributions in successive moments. Blue domain: Ts < 900 K

№12

Time steps is 0.017 s, $G = 0.001 \text{ m}^2/\text{s}$ (middle part of S-shaped curve)

 $G = V_0 r_0, V_0$: inlet mixture velocity, r_0 : radius of delivery tube.

Combustion completeness

Combustion products vs equivalence ratio

№13

The incompleteness of combustion was found just in the region corresponding to nonstationary regimes.

Two petals configuration

Temperature distributions : G = 0.0015 m²/s (middle part of S-shaped curve), Black domain: Ts < 900 K

Evolution of fuel mass fraction during formation of two petal flame

Some other flame patterns

V<u>01</u>5

Tri-branched flame

Spiral-like flame

With increase of the gap between two quartz disks new patterns appears.

Is the thermo-diffusion model described these pattern?

The leading points of these structures move with tangential velocity that in 3-4 times exceeds burning velocity. What is the structure of the leading point?

Conclusions

- Different flame patterns were found in radial microchannel with temperature gradient in the wall and regime diagram was plotted.
- The existence of lower limit of gas flow rate corresponding to stable regime was confirmed by experiment.
- The structures with single and double wheels of Pelton-turbine-like flames were numerically reproduced by a simple thermo-diffusion model with global one-step chemistry.
- The mechanism of leakage of unburned gas at moderate flow rates was clarified.