

Lower limit of weak flame in a heated channel

Yosuke Tsuboi, Takeshi Yokomori*, Kaoru Maruta

IFS, Tohoku University *Keio University For highly efficient combustion, HiCOT, HCCI, etc...

- Controlling initial state of combustion important
- Exergy (Availability) efficiencies of combustion process significantly improved

General characteristics of <u>combustion with heat recirculation</u> studied in the context of microcombustion (Maruta et al. PCI 30, 2005)

- 1-D straight meso-scale channel with temperature gradient
 - S-shaped curve (Normal and weak flames identified)
 - Flames with repetitive extinction and ignition (FREI) identified

• 1-D straight meso-scale channel with temperature gradient covered by:

-Dynamics of flame in narrow tube examined (Jackson, Buckmaster, Lu, Kyritsis, Massa, PCI31, 2007)

- DNS study, Hydrogen/air flames confirmed details of FREI Flames in high velocity region highlighted (Pizza, Frouzakis, Mantzaras, Tomboulides, Boulouchos CNF152, 2008)

Objectives

- Further understandings of weak flame characteristics required
 - Weak flame limit ?
 - Relation with ignition and weak flame ?

Overall picture of flame responses understood by linear stability analysis

S-shaped flame responses

(Maruta et al. CESW40, 2004: PCI 30, 2005)

Overviews of our completed studies

Unstable middle branch confirmed to correspond flames with repetitive ignition and extinction (FREI) (Minaev et al., CTM 2007)

Wall temperature profile established by an external heat source

Experimental results ~ Flame responses ~

Experiments ~ Higher velocity region ~

Self-ignition at downstream side stabilized at upstream location Flame position shifts toward upstream with the decrease of flow velocity

Experiments ~ Moderate velocity region ~

Ignition in downstream Flame kernel moves toward the upstream Flame extinction due to low temperature of the wall

Experiments ~ Lower velocity region ~

 $V_m < 0.2 \text{ cm/s}$ \implies No luminous flame \implies Lowest burning velocity? Flame is stabilized near the ignition position with very small heat release

Experiments ~ Gas and wall temperature differences ~

Experiments ~ Gas and wall temperature differences ~

Mechanism of lower limit of weak flame?

Computations

Calculation code

1-D steady state flame code (Kee et al., 1989)

Energy equation

$$\dot{M}\frac{dT}{dx} - \frac{1}{c_p}\frac{d}{dx}\left(\lambda A\frac{dT}{dx}\right) + \frac{A}{c_p}\sum_{k=1}^{K}\rho Y_k V_k c_{pk}\frac{dT}{dx} + \frac{A}{c_p}\sum_{k=1}^{K}\dot{\omega}_k h_k W_k - \frac{A}{c_p}\frac{4\lambda Nu}{d^2}(T_w - T) = 0$$

Convective heat transfer

No.14

Chemistry

GRI-mech 3.0

Assumption

- Fixed wall temperature
- -Nu = 4 (Constant)

Computations ~ Flame responses ~

Two stable and two unstable solutions agreed with experimental regimes Flame responses exhibit *E-shape* Limit in lower stable branch

Computations ~ Gas and wall temperature difference ~

Difference becomes smaller with the decrease of flow velocity $T_g - T_w < 2 \text{ K} \implies V = 0.1 \text{ cm/s}, T_w = 1230 \text{ K}$

There exists the lowest burning velocity

Computations ~ Gas and wall temperature difference ~

Our assumption: limit induced by mass dissipation

Computations ~ Discussion ~

Mass transport of light radical (OH)

Computations ~ Discussion ~

Mass dissipation in low velocity region significantly larger than that in higher velocity region: radicals diffuse out

Lower limit of weak flame induced by diffusion effects

- •Existence of lower limit of weak flame confirmed experimentally even if heat loss compensated by an external heating.
- Lowest flame temperature corresponded to ignition temperature.
- Computed flame responses exhibited ε-shape, which implies existence of lower limit of weak flame in a lower stable branch.

•Based on computations, mechanism of lower limit of weak flame is supposed to be mass dissipation loss due to mass diffusion in low velocity region.