

3 August 2012

The 34th International Symposium on Combustion

(5E06)

Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile

Satoshi Suzuki*, Mikito Hori, Hisashi Nakamura, Takuya Tezuka, Susumu Hasegawa and Kaoru Maruta

Institute of Fluid Science, Tohoku University

For modeling chemical kinetics of a fuel, experimental data are obtained by,

- shock tube
- RCM
- flow reactor

Targeted fuels are extended to large hydrocarbons

Diesel fuels (C10-16): Low vapor pressure

- Difficult to form homogeneous mixture gas
- Only a few data were reported for low vapor pressure fuels

- Laminar flow
- Constant pressure

Investigate combustion phenomena in simple conditions

• Controlled steady temperature

Observe oxidation process at wide temp. range (400-1300 K)

Previous works: weak flame (flame in low inlet velocity)

• Weak flames exist at specific temperatures

Fuel oxidation process can be observed in weak flames

Institute of Fluid Science, Tohoku University

Investigate oxidation process of diesel surrogate

Weak flame response to Cetane numberGas analysis for clarifying flame structure

Experimental setup

External heat source: H₂/air burner Inlet temperature: 400-440 K depending on applied fuels Flame images were taken by CH-filtered digital still camera

Computational method

Computational code: PREMIX based 1D steady code¹ •Gas-phase energy equation $\dot{M} \frac{dT}{dx} - \frac{1}{c_p} \frac{d}{dx} \left(\lambda A \frac{dT}{dx} \right) + \frac{A}{c_p} \sum_{k=1}^{K} \rho Y_k V_k c_{pk} \frac{dT}{dx} + \frac{A}{c_p} \sum_{k=1}^{K} \dot{\omega}_k h_k W_k - \frac{A}{c_p} \frac{4\lambda N u}{d^2} (T_w - T_v) = 0$ •Chemical kinetics models Heat transfer to the wall

•C8-16 n-alkane² (2115 species 8157 reactions)

- iso-cetane³ (1114 species 4469 reactions) / developed by LLNL
- n-heptane ⁴ (561 species 2539 reactions)

•substituted aromatic⁵ (158 species 1049 reactions) developed by Pitsch et al. *Estimated values are used for missing species in n-alkane and iso-cetane models due to lack of their transport database

Conditions

Same as the experiments; inlet velocity 3.0 cm/s, equivalence ratio 1, pressure 1 atm

[1] K. Maruta, T. Kataoka, N.I. Kim, S. Minaev and R. Fursenko, Proc. Combust. Inst. 30 (2005) 2429-2436.

[2] C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran, E. J. Silke, Combust. Flame. 156 (2009) 181–199.

[3] M. A. Oehlschlaeger, J. Steinberg, C. K. Westbrook, W. J. Pitz, Combust. Flame. 156 (2009) 2165–2172.

[4] H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 114 (1-2) (1998) 149-177.

[5] K. Narayanaswamy, G. Blanquart, H. Pitsch, Combust. Flame. 157 (2010) 1879-1898.

Weak flames response to Cetane number Comparison of weak flame images of diesel surrogates

Heat release rate (HRR) of the various CN fuels

HRR peaks corresponds to the flame luminescence zonesSharp peaks in higher temp. range: Hot flames

Heat release rate (HRR) of the various CN fuels

Relationship of flame temperature and Cetane number

Further studies for low temperature reaction are required

Relationship of flame temperature and Cetane number

Flame appearance in our reactor agree with Cetane rating

Flame structure of n-cetane and iso-cetane Gas analysis for CH₂O

Gas analysis method

- Extracting gas from tube exit, then analyzed by GC
- Target species: CH₂O = Typical product in cool flame
- Comparative validation with n-heptane whose cool flame is confirmed in a lot of studies

CH₂O profiles of n-heptane

CH₂O is produced in cool flame

CH₂O profiles of n-cetane and n-heptane

CH₂O is produced in cool flame

CH₂O profiles of n-cetane are similar to n-heptane

3/Aug/2012

Institute of Fluid Science, Tohoku University

Numerical model overestimated CH₂O production

Blended fuel of n-cetane and iso-cetane

Pure fuels with specific CN

Blended fuels of two fuels

Pure n-cetane (CN 100)

Blended fuel (CN 76)

Pure iso-cetane (CN 15)

Increasing CN...

- Cool flames become stronger
- Hot flames shift to low temperature

Ignition and combustion characteristics of a gaseous diesel surrogates/air mixture were examined by micro flow reactor with a controlled temperature profile.

Experimental data of low vapor pressure fuels are obtained in wide temperature range by the reactor

□Cool flames are observed in high Cetane number fuels in atmospheric pressure

□The weak flame trends corresponds to Cetane rating

Model predictions agree well with experimental data except iso-cetane case

S.S. was supported by , The Combustion Institute office's travel award ^{and} IFS Graduate Student Overseas Presentation Award

This study was partially supported by,

