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A Study of Heat Stroke Dynamics by Combined Analysis of Radiation and Convection

TLH ZEAs, (R 12 T, )l BRI, s et
hoOSEHER, TP SRR, MR OEERE, )IDE EEAY
*LTERFELTARIERE,  ** SRR R A ERT

P T REMFRIFERE S AT W TR
THEE, TG ZE

1. HREM

AW, BAPERIE Y 1 2 ORI A BIE L, AEMRRNIZI T 55 < SHEEO
WL BD RN =L a Y A AR — N & B A AR — VOGS X 7 2 L,
AN TS SHNZEVAEAENTBEN EO LI L T ONER LN THZ &% H
&5, BUEDFRSAEAZH SN L, AHRBPIES RO EINT 5.

AFGO HENE, HERED OB SO BWER 2B S, HEErd 587 & W O BLEND,
A RDAANY MVEHEESIET 5 Z L ThD. 2 A FDOFBBALY [ & BRSO A
YERZHiFT 2 2 & C, BRI BNRRIC T 2 #EREL LT I A FORREMIZ DU CRHm
T5. FREIL, 7V 2B OEE (FTIR) 72 2 B0 AfL, BEGHIZBhET 50
FE#iFAICHIT 5 I A hOFWBALT MEZRE L. I A MOKFEORE S, IR MEAE
Y& Mgk & O, XA NORREERER Y, SESERNRTA K EEE LI

2. HIEBRREOAR

I A MEOWERMERERIET 5720, X 1 1RT & 9 REREE AL, FTIR 280
TI A MNEDOBAARY N KITT A A ZAOREE 0 L. FBRIL 2 — 8 nm D
FEHHTITo72. A b WL, BIEKIC T L CEEZ2EHE A = 5,10, 15 cm ([ZACE
L, JEE &R oxsd 58T L = 20, 24, 32 cm & L7z, / XL A I IAFRRIFL 5
pm O 2 ik, AV (Atomax, BN90) ZfEH L, / AL BIZAFKAE 11 pm O 2 iifk 7 X
JV (Spraying Systems, Quick Fogger) ZfifH L7=. #lEH1X, =71 v — (DP-120C,
Vacutronics) DOE/% 0.5 MPa IZ4ESHE, R~ (NPG-500E, AAKEERT) Z{FH)
S, JiiE% 50 ml/min (ZEEE L7z, A Mi&NLE LKA T, FTIR (FTIR-200, H
K53 HHWTI A MNEOHEAT MVERIE L.

21 ANMBEBEINTZI A NEZRLTEBY, AU TEEINZICLIDbD
P, WG LSRRI D LD, R EGERE (PIV) STk, &/
DN HIEHT D KO R R E 2 RIE Uiz, /2 Av A OWHR{HEIL 16 m/s, /
)L B ORI R EIL 3.5 m/s ThoT-. ZOBHE S LI, B H-0 OEHEE -
KEOWFESRAUTO LY ICHEH Lz : 2 XAV A TIEZENLH 3.05X 108 cm3 & 2.73 X
107%, / AL B TITFNZFH 2.81 X107 cm3 & 2.97X106% Tdh-7-.
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Detector
Nozzle
Valve \
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Compressor Pump

X 1 o SEBRAE OS]

K24 AVINHEHZEINTZIA NEDOEER

70, AWETHM L7z FTIR 2> OHSDEOERD 32 mm THDHZ L 2BEL, K%
T TOIA MNEOHBEPIZ L 11T

£1 K AVDI A NEOIIEIRRE
h=5cm h=10cm h=15cm
Nozzle A 1441 cm® | 40.62cm® | 70.95 cm®
Nozzle B 70.97 cm® 1444 cm® | 2174 cm’

BIERERZX 3 (RT. /AL A OFBRIL, —BIEFEEENEL DI >N TETFL
TSI ENbnD. ZOBREIT, WEENEN ) ZANNLEINDHIZONTI A MNEESHN
KELIRY, ZHUTHE:S THEREEPEINT 270 EFE 2 65, [EHTREIE, 7 Auh
B S B KT ORIE S ARIZRENT 5 & B 2 BE LD, T X CORERIChTZ-> T
BIERINDHZ ETHDH. KEOREIT HETII R, TOME, I A MNaNOREIMHIT%L
TRUZIR S TCWND. LTER- T, S%ROMIETIE, AR FOZoBECBET %, X0 afEdr
IRIENVETH .
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Nozzle A (d, = 5 um) —8— — & - ==
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Transmittance 7, [%)]
S
o

Wavelength A, [um]
X3 : ) ANALEDFENNZ LD ) 2V ADSD I A NEDOyaEimR
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Study on Micro—scale Evaporation for Heat Transfer Enhancement

Junnosuke Okajima*¥, Henrik Sontheimer**
Peter Stephan**{+
*Institute of Fluid Science, Tohoku University
**Institute of Technical Thermodynamics, Technical University of Darmstadt
TApplicant, $1Non-IFS responsible member

Purpose of the project

This project aims to clarify the characteristics of evaporative heat transfer on a
micro-scale through the evaporative moving contact line model and to investigate the
surface structure to enhance the micro-scale evaporation. We understand the
evaporation phenomena for the cooling system and develop the surface design
strategy.

Additionally, the fundamental aspects of boiling heat transfer are also evaluated.
The formation of a microlayer, which is one essential factor of boiling heat transfer, is
numerically conducted. We will develop a new model to describe the microlayer
formation by collaborating with the numerical simulation in IFS and the experiment
in TU Darmstadt.

Details of program implement

This year, we numerically investigated the cooling performance of evaporative heat
transfer on a structured surface. Mr. Sontheimer in TU Darmstadt stayed at IFS in
three weeks. We developed a new numerical model to simulate the interface
deformation and its evaporation by OpenFOAM, as shown in Fig. 1(a). This numerical
model can evaluate the local evaporative mass flux on the structured surface. We
found that the interface motion was affected by the capillary force induced by the local
structure, as shown in Fig. 1(b), and the strong evaporation was generated from the
thin film formed at the top surface of the structure.

In addition, we conducted a numerical simulation on single bubble nucleate boiling.
We focused on the condition of the microlayer formation and compared the
experimental data taken in TU Darmstadt. It is known that the dielectric fluid FC-
72, which has low viscosity and low surface tension, hardly forms a microlayer during
boiling. In our numerical simulation, we successfully captured the microlayer of FC-
72 liquid by using a fine computational grid. The formation condition of the microlayer
was dependent on the temperature of the heat transfer surface and the expansion
velocity of the interface.

Achievements
The obtained results contribute to modeling macroscopic wetting behavior and
heat transfer on the micro-structured surface and the design strategy to enhance the
evaporative heat transfer for high-heat-flux cooling.
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Figure 1: Numerical model and calculation results

4. Summaries and future plans
This year, we started a new collaboration on the simulation of interface extension
on micro-structured surfaces. Additionally, the microlayer formation of nucleate
boiling of FC-72 was also investigated. As a next step, we will develop the numerical
model of the thermal device, such as a heat pipe or vapor chamber. The knowledge of
the wetting behavior of liquid on the micro-structured surface can be implemented
into the simulation model of a thermal device.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] J. Okajima, H. Sontheimer, and P. Stephan, Study on Micro-scale Evaporation for
Heat Transfer Enhancement, Proceedings of the 23rd International Symposium on
Advanced Fluid Information, Sendai, (2023), CRE-30, pp. 93-94.

[2] H. Ishibashi, K. Ota, P. Stephan, J. Okajima, Numerical Simulation of Bubble Shape
and Heat Transfer During Nucleate Pool Boiling of FC-72, Proceedings of the 20th
International Conference on Flow Dynamics, (2023), pp. 1268-1270.

3) Patent, award, press release etc.
Not applicable
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(LiB) Combustion Processes

Samuel L Manzello*{, Sayaka Suzuki**
Kaoru Maruta***¥+
*Reax Engineering, USA
**Tokyo Institute of Technology, Japan
***Tnstitute of Fluid Science, Tohoku University, Japan
tApplicant, $IFS responsible member

1. Purpose of Project

In large outdoor fires, the release of combustion products is known to cause severe
visibility and health concerns. The combustion of electric vehicles in large outdoor fires
is believed to contribute to a range of particulates and these effects have not been
quantified, particularly related to the combustion of the LiB cells found in EVs. In this
project between Reax Engineering, Tokyo Institute of Technology, and Tohoku University,
the particulate morphology generated from LiB combustion will be quantified using
thermophoretic sampling and subsequent transmission electron microscopy (TEM).

2. Details of program implement

To sample particulates that are generated, the well-known principle of thermophoretic
sampling will be used. In the presence of a temperature gradient, the hot particles will
be collected using cold grids that may be used for Scanning Electron Microscope (SEM)
and Transmission Electron Microscopy (TEM) analysis. The very limited prior studies in
for LiB combustion have used SEM. While the SEM images are useful, TEM analysis,
and in particular high-resolution TEM (HRTEM) is needed to provide finer details of the
interior structures of the particulates. The research project will harness TEM
capabilities at Tohoku University. The LiB combustion experiments will also utilize
combustion expertise in the Maruta laboratory at Tohoku University. To demonstrate the
feasibility of the study, one type of LiB cell (lithium nickel manganese cobalt oxide (NMC),
will be used in the project, and other cell types may be considered in the future. The work
will also build on current working using the microflow reactor, where the combustion of
various chemical constituents in LiB is being performed at Tohoku University.

Sampling Grid

°
Pneumatic Piston < >
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Figure 1: Schematic of thermophoretic sampling system developed for this study.




3. Achievements

In the first year of this project, the thermophoretic sampling probe was designed and
completed (Fig. 1). The probe consisted of a pneumatic piston and the control system
affords the sampling time to be varied. This probe has been verified to be effective in
collection of particulate samples from engineered building materials. Due to large range
of LiB cells available and overall high cost, the project will purchase some LiB cells in
the second year. The use of radiant panel will used to induce thermal runaway in the
LiB cells. The radiant panel system has also been designed and will be constructed in
year 2. The research team presented the project at the 2023 ICFD symposium held in
Sendai, Japan. In addition, the proposer was invited to be a speaker and panelist at the
7th International Sooting Flame Workshop, a prestigious workshop held in partnership
with the International Combustion Symposium. It is the first time the ISF will discuss
how to address particulates from large outdoor fires. Finally, the proposer was also
proposed and elected to a new three-year term as convenor of ISO TC92/WG14, now
ending in 2026.

4. Summaries and future plans

It is expected that the project will develop new knowledge on the morphology of
particulates generated from LiB combustion processes. ISO TC92/Task Group (TG) 03
(Large Outdoor Fires and the Built Environment) was formed to advise ISO TC92 (Fire
Safety) on a path forward for the topic Large Outdoor Fires and the Built Environment.
As a result of ISOTC92/TGO03 activities, including a workshop at the ISO TC92 Plenary
meetings on October 2018, and a subsequent special section of papers from this workshop
in the journal Fire Technology, the task group proposed the formation of a new working
group (WG) under TC92. This new working group (WG), entitled ISO TC92/WG14
(Large Outdoor Fires and the Built Environment) has been formally approved by global
ballot. The proposer is the convenor of ISO TC92/WG14, by global ballot. The first
globally approved task of ISO TC92/W14 was the publication of ISO TR/24188:2022
Large Outdoor Fires and the Built Environment —Global Overview of Different
Approaches to Standardization. 'The second globally approved task of ISO TC92/WG14
was ISO 6021:2024 Firebrand Generator.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
[1] S.L. Manzello, S. Suzuki, and K. Maruta, Characterization of Particulate Morphology
from Lithium-Ion Battery Combustion Processes, ICFD 2023, Sendai, Japan, 2023.

3) Patent, award, press release etc.
(Patent) Not applicable

(Award) Not applicable
(Press release) Not applicable

(International Standards) Elected as convenor of ISO TC92/WG14 for new-three year
term.
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Fabrication of nanofibrous layer covered stents
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Purpose of the project

In the past decade, cardiovascular disease has been the highest cause of morbidity
and mortality worldwide. Amongst other cardiovascular disorders, ischaemia in
other words, insufficiency of blood flow has been consistent cause of hospitalisation
and has been regarded as one of the “culture diseases of the 21st century. In today's
rapidly advancing medical field, the development of novel implantable devices plays
a crucial role in improving patient outcomes and quality of life. One such device is
the coronary stent. Coronary stents are small mesh-like tubes that are implanted in
narrowed or blocked coronary arteries to help restore blood flow and prevent heart
attacks (Figure 1). Over the years, various advancements have been made in
coronary stent design and fabrication to enhance their efficacy and long-term
performance. One of the major challenges associated with coronary stents is
minimizing complications such thrombosis and restenosis. To address this challenge,
researchers have turned their attention towards the fabrication of covers for coronary
stents. The objective of this project is to fabricate a nanofibrous coating layer for a
coronary stent. The nanofibrous layer aims to direct tissue regeneration towards an
endothelial cell lining. By layering the stent wire with an endothelial lining, the risk
of clot, thrombosis and stent restenosis will decrease. To achieve this goal
nanofibrous matrices fabricated from Polysuccinimide (anhydrous form of
polyaspartic acid), polycaprolactone and poly(vinyl alcohol) will be investigated.

| Coronary artery disease (narrawed artery)
wlion Arlery cross section

Aetiology

Treatment

@ Stent delivary @ Balloon inflation @ Stentin place

Figure 1. Arterial Coronary stenosis: Aetiology and Treatment




2. Details of program implement

The Hungarian research group has abundant experience with nanofibrous mesh
fabrication and the field of electrospinning. Electrospinning is versatile technique
which can be utilised to produce fibres measuring from micrometres to nanometres.
Its most well-known advantage is versatility and its ability for countless
modification. In this regard, the technique is suitable to fabricate nanofibrous layers
over stent wires. The technique requires simple component including a polymer
solution filled syringe, a high voltage power supply and a power collector. However,
due to the number of fabrication parameters and their dynamic relationship, the
process requires optimisation. The group has previously worked with the above
mentioned three polymers nevertheless electrospinning on a stent wire will
definitely require optimisation. Thus, in the first phase of this project the Hungarian
group will focus on the parameter optimisation, and fabrication of 3 different stent
cover layers from polysuccinimide, polycaprolactone and poly(vinyl alcohol). This of
course will inquire physio-chemical characterisation and even mechanical
evaluation as the layer should be robust and retain its adherence to the stent wire.
In the second phase of the project, cell toxicity, cell adherence and cell differentiation
will be investigated by both Hungarian and Japanese groups. Probably the most
crucial part of the project. Although the Hungarian group has investigated cell
toxicity of the respective polymers, a metal stent can be regarded as an addition
variable in the equation. While such metals are even currently used in the clinics,
the polymer-stent interaction is yet to be investigated. Furthermore, cell adhesion
to stent and differentiation are also an essential examination step. This is because
the objective is the development of a continuous endothelial layer on the stented
vessel. Such a layer will surely inhibit blood clot formation. The Japanese group has
done several analyses on cell-stent interactions before; thus, they would be
responsible for this part of the research. Given that coated stents have different
properties from the stents they have evaluated before, optimization of the evaluation
equipment would be required. Following that, they would proceed with the
evaluation of cell adhesion and cell differentiation.

High Voltage
Power Supply

Figure 2. Classic electrospinning setup



3. Achievements
During the past year, we successfully covered stent wires with three different
polymers namely polysucinnimide, polycaprolactone and poly(vinyl alcohol). The
biggest issue was the size of the wire and the optimisation of the covers thickness. As
a first step, we replaced the static, flat collector with a motor that could continuously
rotate the wire.

Nanofibers

Stent Wire

[ Hiogh Voltage Power Supply ]

Figure 3. Modified electrospinning setup

With this technique, the stent wires were successfully covered. As seen in the figure
below, the wire becomes white as its being covered. The thickness of the stent also
increases with each passing minute.

B

Uncovered

Covered

Figure 4. Result of the modified electrospinning technique

Furthermore, the nanofibrous layer is well visible on the microscopic layer as seen using
with the scanning electron microscopy. The calculated fibre diameters were similar to
the diameters documented in our previous works. Therefore, the stent wire as a collector
has no significant effect on fibre diameter, In addition, fibre size can be modified in the
future as required by changing the flow rate, polymer concentration etc.
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Figure 5. Scanning electron microscopy of the stent cover

Table 1. Electrospinning optimisation

Polymer solution Electrospinning Electrospinning Theoretical cover
concentration rate duration mass (g)
1 0.004
3 0.013
o,
25 wiw % 1 ml/hour 5 0021
10 0.042

Following the completion of stent coverage, the collaboration proceeded to the next phase
where the Japanese group evaluated the compatibility of the coated stents with the
current design of flow chamber. When the Japanese group performed the test, they found
that detachment seemed to occur. This detachment, however did not progress. Then, by
assessing the mass changes on the coated stents before and after 24-hour flow exposure,
it was found that the mass does not decrease, indicating that while some parts of the
coating do detach, some parts that do not detach still keep the detached part intact with
the whole coating. Supported by the fact that the detached part is the one on the top part
of the stent, they deduced that the high value of shear stress at the top part causes the
detachment, and further modification of the chamber is needed to avoid this high value,
and effectively the detachment itself. As the current shear stress is far above the
physiologically relevant one, decreasing it won't affect the overall project. In addition,
the Hungarian group started investigating additional tactics to enhance the polymer-
stent attachment.



Figure 6. Detachment of the stent coating after flow exposure.

< Flow Direction

4. Summaries and future plans

The current project aims to fabricate nanofibrous covers for coronary stents. After one
year, the participants have successfully produced three different polymer-based stent
covers. While the process requires optimisation these results seem very promising. Once
a proper design has been established, this collaboration will move on to the final phase
where the cell adhesion, differentiation, and toxicity will be analysed. In parallel
additional strategies will be examined including polymer cross-linking and polymer-
composites.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[1] Constantinos Voniatis, Angela Jedlovszky-Hajdu, “Developing Nanofibrous Coatings
For Cardiovascular Stent Wires", 20th International Conference on Flow Dynamics,
November 6 - 8, 2023, Sendai, Japan.

3) Patent, award, press release etc.

Best Presentation Award for Young Researcher Awarded to: Hanif Saifurrahman

20th International Conference on Flow Dynamics

Best Presentation Award for Young Researcher Awarded to: Constantinos Voniatis
20th International Conference on Flow Dynamics
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Purpose of the project

The plasma-induced fine bubble exhibits similarity with the cavitation bubble.
However, our previous research found that the plasma-induced fine bubbles have
unique behaviors due to the specific properties of the plasma, such as abnormal
polarity effect, and by-product enhancement. Therefore, the objectives of this project
are the experimental visualization and numerical calculation for the bubble dynamics,
focusing on the effect of charge provided by plasma flow.

Details of program implement

Research on bubble dynamics has been widely explored theoretically, numerically,
and experimentally for decades, aiming at modifying the bubble dynamics thereby
regulating the desired products. Fig. 1 shows the experimental platform for bubble
generation and visualization. When a pulsed laser is focused in the water, plasma is
initially generated in

Laser trigger )
water and causes the Delay |~ | Nano pulse laser ﬂ (I \M"mr
lonization of the generator (82 qu) L)
molecules, inducing an Lok Bubble
explosive bubble that , :
. Camera trigger i
expands against the I High-speed | Background
: camera light(532 nm)
ambient water.
During the expansion, Fig. 1 Platform for bubble generation and visualization.
temperature an

pressure inside the bubble decrease and the pressure eventually becomes smaller
than the ambient pressure at the maximum bubble volume. Then the shrinkage of
the bubble was driven by the pressure difference. At the collapse stage, the pressure
and temperature increase dramatically, and a variety of chemical reactions can be
induced. These stages may periodically repeat for several cycles due to different liquid
properties and environmental conditions.

In this study, we succeed in generating a single spherical bubble by elegantly
aligning the optical systems for laser focusing. The laser beam was focused on the
center of the water contained by a convex lens. A shadowgraph high-speed imaging
system was constructed to experimentally explore the effect of charge distribution on
the bubble dynamics based on the high-speed visualization system. Then, the optical
images were processed to identify the bubble boundary as shown in Fig.2. It was
confirmed that the relationship between the equivalent radius of the bubble rand the
time ¢follows the theoretical prediction from Rayleigh-Plesset equation.



3. Achievements
The bubbles can be reproducibly
generated with a stable radius in the
constructed platform. A numerical |
calculation model considering the charge

Bubble radius
T

T T
Rayleigh-Plesset equation
O Calculated radius

effect was proposed. These preparations o8 &

can be useful for further research and g OOO

analysis of the charge effect. Based on S N

the results, a paper was published in 04t o

Applied Physics Letters. SRy,

02r [e]

4. Summaries and future plans . | |
It was found that discharges inside oo a b ’
the bubble can be used for identifying Fig. 2 Calculated bubble radius from
chemical reactions. In the next period, we the experimental results and the
will continue this topic and dig into the theoretical result derived from
new concept of the plasma-induced fine Rayleigh-Plesset equation.
bubble and involved chemical reactions.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] S. Liu, K. Nitto, O. Supponen, S. Kamata, T. Nakajima, M. Farhat, T. Sato: Plasma-
based identification of gases in a laser-induced cavitation bubble, Applied Physics
Letters, Vol. 123, No. 9, (2023), pp. 094102. DOI: https://doi.org/10.1063/5.0164732

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] S. Liu, O. Supponen, T. Nakajima, T. Sato: Effect of charge distribution on the
plasma-induced fine bubble dynamics, Proceedings of the Twenty-third
International Symposium on Advanced Fluid Information, Sendai, (2023), CRF-66,
pp. 183-184.

[3] S. Liu, K. Iwasawa, A. Nakayama, T. Nakajima, T. Sato: Observation of laser-
induced optical breakdown and its application in biomedicine, Proceedings of
Twentieth International Conference on Flow Dynamics, Sendai, (2023), 0S8-15, pp.
632-633.

[4] S. Liu, K. Nitto, O. Supponen, S. Kamata, T. Nakajima, M. Farhat, T. Sato: Plasma
Discharge Inside a Laser-Induced Cavitation Bubble, Proceedings of 16th
International Symposium on Advanced Plasma Science and its Applications for
Nitrides and Nanomaterials, Nagoya, (2024), pp. 07aB020.

3) Patent, award, press release etc.
(Patent)
Not applicable

(Award)
Best Presentation Award, “Plasma Discharge Inside a Laser-Induced Cavitation

Bubble”, S. Liu, K. Nitto, O. Supponen, S. Kamata, T. Nakajima, M. Farhat, T. Sato,
March 7, 2024, ISPlasma2024 committee.

(Press release)
Not applicable
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1. Purpose of the project

The research aims to employ molecular dynamic (MD) simulation methods to visually

represent the permeation process of Carbon Dioxide (CO2) molecules across

microalgae's lipid membranes. This approach allows for a detailed exploration of the

interaction dynamics between COz and lipid membranes, offering insights that may

not be readily achievable through experimental techniques. The study seeks to

achieve three main objectives:

a) Showcase Mechanism and Dynamics of CO2 Permeation
It can provide a detailed temporal evolution of interactions between CO:2
molecules and lipid membranes. By tracking the trajectory of CO2 molecules, it
helps in understanding how changes in molecular orientation and configuration
affect permeation.

b) Partially Quantitative Insights into Gas Penetration
By using the trajectory data to calculate the number of CO:2 molecules
penetrating the membrane over time. Analyzing these data will help quantify the
rate of penetration under different conditions.

¢) Analysis of Properties Related to Gas Permeation
The properties evaluated include density, free energy profile, and structural
changes in area of DPPC (Dipalmitoylphosphatidylcholine) lipids. RDF analysis
is also carried out to examine the distribution of molecules around a reference
COz molecule, which provides insights into the local molecular environment and
interaction potentials, and finally, transport properties which include
permeability and diffusion coefficient are also analyzed.

2. Details of program implement
Research collaboration related to Molecular Simulation of CO2 Permeation on DPPC
lipid membranes is a series of research collaborations that have been carried out in
previous years regarding investigations of carbon capture and storage using the
adsorption method. In 2023, this collaborative project was part of the general
collaborative research activities at the Institute of Fluid Science (IFS) Tohoku
University, utilizing IFS's computing support facilities.

To ensure the project's objectives were met and to facilitate effective collaboration, the
research team held a schedule of regular meetings, held at least twice a month. These
meetings provided a platform for discussing ongoing research, sharing findings, and



planning future activities. Additionally, an evaluation of the research progress was
conducted during the International Conference on Fluid Dynamics (ICFD), held from
November 6-8, 2023. This event was crucial for presenting initial results, receiving
feedback from the scientific community, and refining research methodologies based
on peer input.

Achievements

In our research, we have examined the process of COz2 permeation through DPPC
lipid membranes, focusing on the interactions and dynamics of this process at the
molecular level. The study begins with an equilibration phase to stabilize the system,
after which we initiate the actual permeation of COz. This involves CO2 molecules
starting to penetrate the DPPC lipid membrane, engaging in interactions with the
lipid molecules as they traverse across the membrane. The simulation is conducted
over a period of 30 ns using a total of 32 CO2 molecules. The designated simulation
box measures 3 x 3 x 6 nm, maintained at a temperature of 310 K under atmospheric
pressure. Initially, the COz molecules are positioned in the water region of the
simulation at time t=0.The movement of these molecules primarily in the z-direction
through the phospholipid bilayer is observed and analyzed as depicted in Figure 1.
Notably, CO2 molecules begin to permeate through the DPPC bilayers within the first
nanosecond. By the 30 ns, most CO2 molecules have successfully entered the bilayer,
indicating significant permeation. Total numbers of CO2 molecules which had been
penetrated in the lipid membrane are observed every 1 ns as presented in Figure 2.

0ns 1ns 30 ns

Figure 1: Visualization of CO2 Permeation in DPPC Lipid Membrane
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Figure 2: CO2 Molecules in DPPC Lipid Membrane

The structural changes in lipid membranes are monitored through the calculation of
Area per Lipid (APL), which is determined by dividing the size of the simulation box
by half the number of lipids along the z-axis.The obtained APL value is 0.65 nm as
presented in Figure 3. This value shows a strong agreement with the previous study,
which focused on the study of microalgae lipid membranes [1]. The consistency
between the this study suggests that the APL value of 0.65 nm is a reliable measure
of the structural changes in lipid membranes, providing valuable insights into the
properties and behavior of these membranes.
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Figure 3: Calculated Area per Lipid Membrane

In our study, we analyze the density of CO2 gas within the DPPC lipid membrane, a
key aspect of understanding how CO:2 interacts with and is absorbed by the



membrane. This analysis is visually represented in Figure 4, which depicts the gas
density profile along the z-axis of our simulation box. This profile is crucial for
assessing the mass accumulation of COz on the membrane over time. Initial
measurements taken at 3 ns reveal that CO2 molecules have not yet significantly
penetrated the lipid membrane, with the majority of the gas still located outside the
membrane at a distance of 30 A from it. However, by the end of the simulation period
at 30 ns, the situation changes markedly. The COz gas is observed to be uniformly
distributed and absorbed within the membrane at a reduced distance of 15 A. This
progression demonstrates a significant shift in the COz2's position relative to the
membrane, suggesting effective permeation and absorption processes occurring over
the duration of the simulation.
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Figure 4: CO2 Mas Density in DPPC Lipid Membrane

Free Energy profile is calculated from density profile using the relation : AG =

—kgln (pp((zz))), with kB is the Boltzmann constant, p(z) is CO2 density at specific z-
0

coordinates, and p(zo) is the minimum CO: density in the system as depicted in
Figure 5. This figure reveals that the average free energy of COz outside the bilayer
(between 20-30 A) is approximately 3 kJ/mol. As COz enters the bilayer, there is a
notable drop in free energy down to -3 kJ/mol. This significant decrease indicates the
presence of a free energy barrier, which CO2 molecules must overcome to successfully
permeate the bilayer. The location of this barrier correlates with the region occupied
by the lipid headgroups. These headgroups are characterized by their strong charges
and are densely packed with water molecules, creating a challenging barrier for COz
molecules attempting to cross the bilayer. This understanding of the free energy
landscape helps elucidate the molecular dynamics and energetic requirements
involved in the permeation process.
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Figure 5: Free Energy Profile of CO2 Molecules in DPPC Lipid Bilayer

We calculated the diffusion coefficient of CO2z molecules using Mean Squared
Displacement (MSD) analysis as described in Table 1. This method quantifies how
far COz2 molecules travel in the membrane over time, providing insights into their
mobility. This value offers a measure of the rate at which COz molecules diffuse
through the membrane, which is critical for understanding their permeation
dynamics. For comparative context, a previous study examining CO:z molecule
permeation into microalgae reported a slightly higher diffusion coefficient of 1.83 x
105 ecm?/s. This slight discrepancy could be attributed to differences in the biological
and physical properties of the membranes studied, as well as the experimental
conditions under which the diffusion was measured. Such comparisons are vital for
validating our results and understanding the variability of COgz diffusion across
different biological systems.

Table 1: Free Energy Profile of CO2 Molecules in DPPC Lipid Bilayer

Properties Values
D 1.68 x 10° cm?/s

D, 1.11 x 10° cm?/s

Dyy 2.06 x 10° cm?/s

P 0.54

To deepen our understanding of how CO2 gas molecules interact with different
components of the DPPC lipid membrane, we conducted radial distribution function
(RDF) calculations. These calculations are crucial for analyzing the probability of
finding a CO2 molecule at a certain distance from various groups within the
membrane, such as the carbon chains of the phosphate group, hydrocarbon chains,
nitrogen, and water molecules. Our findings indicate that at shorter distances,
specifically between 2-3 A, CO2 molecules predominantly adsorb onto water
molecules. As the distance increases to around 3 A, a significant diffusion of COz2
molecules into the hydrocarbon region is observed, with an increasing concentration
of COz molecules persisting up to a distance of 14 A. This pattern suggests a higher
affinity of COgz for the hydrocarbon chains within this range. Additionally, CO2
penetration into the phospholipid bilayer region starts at approximately 4 A and



continues to increase up to 14 A. This gradual increase highlights the dynamic
interaction of COz with the membrane, providing detailed insights into the molecular
mechanisms of COz permeation and its spatial distribution within different regions
of the lipid membrane.
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Figure 6: Radial Distribution Function of CO2 Gas Molecules in DPPC Lipid
Membrane

Summaries and future plans

For the future directions of our research on CO:z permeation dynamics, we plan to
refine our modeling techniques to yield more precise and biologically relevant results.
One major advancement will be to model the cell membranes of microalgae as
composites of various lipids. This approach stems from physical and chemical
analyses of different microalgae species, which suggest that their membranes are
complex mixtures of lipid types, each potentially influencing COz transport in unique
ways. By incorporating a diverse range of lipid components into our simulations, we
aim to replicate the natural environments of these membranes more accurately and
thus provide deeper insights into the CO2 permeation process. Further, we want to
analyze the COz permeation process in gas mixture and the effect of salinity in the
environment.

Additionally, we aim to innovate our research by examining the effects of light
intensity on COz diffusion across these membranes. Light, a critical factor in the
metabolic processes of microalgae, likely impacts how COz is absorbed and processed.
However, the challenge here lies in the limitations of current molecular dynamics
techniques, which are not well-suited to model the effects of light. To address this,
we plan to explore other computational methods, such as Density Functional Theory
(DFT), which may offer the capability to simulate light interactions more effectively.

Research results

Not applicable. One manuscript are going to be submitted in Energy Sources, Part
At Recovery, Utilization, and Environmental Effects.
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Combustion: Toward P-Containing Fire Suppressants for Lithium-Ion Battery
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1. Purpose of the project

The purpose of the project was to produce experimental data and develop and validate a
detailed kinetics model for tri-methyl-phosphate. This molecule is one of the simplest P-
containing molecules on a structural point of view, facilitating the work on the model
end, and P-containing molecules are candidate fire suppressants for lithium-ion
batteries. This type of work is necessary to improve the safety of devices and vehicles
powered by lithium-ion batteries.

2. Details of program implement

New experimental CO measurements were collected for TMP pyrolysis and oxidation for
the first time using a shock tube at Texas A&M University. Representative CO time
histories are visible in Fig. 1 at for the pyrolysis case, with the CO profiles increasing
rapidly until a plateau is reached for the high-temperature cases, while the rate of CO
formation is much slower at lower temperatures. Numerical predictions were performed
using the detailed chemical kinetics mechanism from Glaude et al. (P.A. Glaude, C.
Melius, W.J. Pitz, and C.K. Westbrook, Proc. Combust. Inst., 29, (2002), 2469-2476.)
showing the overall poor agreement of the model with the data, justifying this work.
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Fig. 1 Representative CO time-history profiles for the pyrolysis of TMP in 0.9975
He/Ar. Dashed lines represent the numerical predictions using the Glaude et al.

Data were also obtained in presence of oxygen with equivalence ratios (¢) of 0.5 and 1.0.



Some representative profiles at ¢ = 0.5 and their model comparisons are visible in Fig. 2,
showing the very large discrepancy between the model and the data.
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Fig. 2 Representative CO time-history profiles for the oxidation of TMP in 0.995 He/Ar.
Dashed lines represent the numerical predictions using the Glaude et al. mechanism.

A micro flow reactor with a controlled temperature profile (MFR) at Tohoku University
was also used and results for the pyrolysis of TMP are visible in Fig. 3 for methane and
CO. As can be seen, for this case, the model seems to predict the data relatively well.
However, it is worth mentioning that the equilibrium for these two species is not reached
before about 1400 K according to the model and reaches 15000 ppm for methane and
about 25000 ppm for CO.
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Fig. 3 Measured absorption of CHs4 and CO during TMP pyrolysis at atmospheric

condition using a FTIR diagnostic. Dashed lines represent the numerical predictions
using the Glaude et al. mechanism.

3. Achievements

The experimental measurements planned in the project proposal have been performed.
The preliminary ab initio calculations showed new, unexplored reaction pathways. A
paper was prepared and presented during the 20th ICFD.



4. Summaries and future plans

To summarize, the experimental measurements initially planned for this project have
been performed. These measurements exhibited flaws in an initial detailed kinetics
model from the literature and work has been performed to update this model, including
ab initio calculations. However, the model is not finalized yet and the next step will focus
on improving the model using the new data obtained during the course of this project.
The ultimate goal will consist in writing and publishing a paper using these results and
the updated model.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] C.M. Grégoire, E.L. Petersen, O. Mathieu, K. Kanayama, H. Nakamura, K. Maruta:
Shock-Tube CO Measurements during the Combustion of Ethylene Carbonate, a
Battery Electrolyte Component. 29th International Colloquium on the Dynamics of
Explosions and Reactive Systems, (2023), #036.

2) International and domestic conferences, meeting, oral presentation etc
(included international conference without peer review)

[2] C. Grégoire, R. Matsumoto, K. Kanayama, T. Tezuka, M. Izumi, H. Nakamura, K.
Maruta, E. L. Petersen, O. Mathieu: Experimental and Kinetics Modeling Study of
Tri-Methyl-Phosphate Pyrolysis: Toward P-Containing Fire Suppressants for
Lithium-Ion Battery Electrolytes. Proceedings of the Twenty-third International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-5, pp.28-31.

3) Patent, award, press release etc.
Not applicable
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Figure 1: Perspective view of the nozzle exit and the flat plate of the wind tunnel.
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Figure 2: Cross-
streamwise profiles of the
time-averaged velocity
profiles on a flat plate at
x=15mm.

Figure 3: Cross-
streamwise profiles of
the time-averaged
velocity profiles on a flat
plate at x=200 mm.

Figure 4: Streamwise
profiles of the turbulent
intensity at y= 1.0 mm.
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Purpose of the project

Many researchers are interested in concentrating photovoltaic thermal (CPVT)
systems because of their relatively higher energy performance. High temperatures
significantly reduce PV cell electrical efficiency. Cooling water circulation
underneath photovoltaic cells lowers the temperature and utilizes thermal energy.
Consequently, a CPVT system can increase total energy efficiency by producing
thermal and electric power. The cooling water's thermophysical characteristics
significantly influence the system's thermal performance. An increased thermal
conductivity enhances the working fluid's heat transfer rate. By using the nanofluids,
CPVTSs' electrical and thermal efficiency has increased. However, not much research
has been done on CPVTs using non-imaging concentrators.

It has been thought that cooling fluid circulation and copper pipe coils under
photovoltaics might help lower the temperature of the cells. The total efficiency of
PVT systems is comparatively higher than that of a PV system. Furthermore,
spectral mismatch lowers PVs' electrical performance. A PV generally reacts to the
visible and near-infrared portions of the sun spectrum. The remaining solar energy
raises the temperature of the cell. Using an optical filter is one way to address
spectral mismatch. While the filter may absorb thermal radiation, it may transfer
beneficial radiation to PV. Extensive research has been conducted on spectral beam
splitting in PVT systems. However, the CPVT system with a non-imaging focus offers
a fresh perspective on the research. Some investigation areas remain intact and
require more investigation. Some new non-imaging concentrators, such as compound
hyperbolic, are in the literature. In this year of the project, a preliminary
investigation was conducted to see the effect of the optical filter fluid and its cover on
performance. The fluid was contacting and flowing through the PV surface. Moreover,
various types of non-imaging concentrator photovoltaic thermal systems with
nanofluids have been investigated regarding thermal and electrical performance.
Compound parabolic concentrators (CPC), V-trough, and CHC concentrators have
been considered for the evaluation.

By using a unique design for a non-imaging solar concentrator, this research aims to
increase electrical efficiency and power output by providing more uniform sunlight
on PV cells to prevent hot spot development and overheating. Additionally, research
aims to investigate how the different working fluids' phase change heat transfer



mechanisms affect the CPVT system's electrical and thermal performance. This
project's primary goal is to provide a unique, low-cost design for a solar concentrating
photovoltaic thermal (CPVT) system with enhanced electrical and thermal
performance.

Details of program implement
In order to lower the temperature of the photovoltaic system and make better use of
the thermal energy, nanofluids were taken into consideration for the concentrating
photovoltaic thermal system during the second year of the cooperation. As a
preliminary investigation of CPVT, a water optical filter was also taken into
consideration in a PVT system.

In the concentrating photovoltaic thermal systems (CPVT), compound parabolic
concentrators (CPC), compound hyperbolic concentrators (CHC), and V-trough
concentrators were taken into consideration. The CPC, V-trough, and CHC reflector
geometries of the CPVT are seen in Figure 1. Glass, poly-crystalline silicon cells
(pc-Si), ethylene-vinyl acetate (EVA), anti-reflective coating (ARC), another EVA
layer, Tedlar polyvinyl fluoride (Tedlar) layer, copper plate, and copper tube are the
components of a PV/T module.

There are 5000 vectors created from the incident solar energy. The energy rate of the
PV, which was separated into 360 components, was ascertained by the ray tracing
analysis. A definition for incoming solar radiation was 1000 W/m”2. Diffuse
radiation was not taken into account. The concentration ratio 1.94 was believed to be
the same for all concentrators. The ANSYS-Fluent was used to do the numerical
analysis. By using the finite volume approach, the governing equations and the
ANSYS-Fluent code are solved with the assignment of the starting and boundary
conditions. The concentration ratio of 1.94 was assumed to be the same for all
concentrators.
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Fig. 1 Concentrating photovoltaic thermal systems with CPC (a), V-trough (b) and
CHC (c) reflectors.



Figure 2 illustrates overall efficiencies for various fluids in the case of the CPC-PVT
system. SiC-H20 and Al203-H20 nanofluids were considered for the evaluation. The
nanofluids' 1, 2, and 3 % mass fraction were considered. SiC-H20 nanofluid shows
preferable performance compared to base fluid and Al203-H20. SiC 3%wt-H20
provided about 3.85% larger overall efficiency than Alo033%wt-H20. SiC 1%wt-H20
has a 2.78% larger overall efficiency compared to AloO33%wt- H20. Figure 3 depicts
overall efficiencies for CPC, V-trough and CHC-PVTs. CPC and V-trough-PVTs show
similar efficiencies until the incidence angle of 20°. After the incidence angle of 20°,
the efficiency of the V-trough significantly reduced while the the reduction in the
CPC case is much smoother. In the case of CHC-PVT, the overall efficiency gradually
decreases while the incidence angle gets larger. On the other hand, CHC-PVT
provides better power generation per reflector area.
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Fig. 2 Overall efficiencies for various fluids in the case of CPC-PVT system
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Fig. 3 Overall efficiencies for CPC, V-trough and CHC-PVTs



Further experimental research was carried out using an optical filter on a PVT system.
On July 25, 2023, under a clear sky, an experiment was carried out on the rooftop of the
Bartin University office building, which is situated on Turkey's western Black Sea
(41.6°N, 32.34°E). Fig. 4 displays a picture of the experimental setup.

TC3 (Ambient)
PVT-PG-water TC2 s Pyranometer PV

et |

Sforage 4ank

Fig. 4 Schematic view of the experimental setup of spectral splitting photovoltaic
thermal system and photo of the experiment.

Figure 5 illustrates the systems' current, voltage, and power generation values. The
most extensive current, voltage, and power generation values were observed in
PVT-FG-water as the circulating fluid temperature was comparatively low (below 34 °C).
While increasing the ambient temperature and water temperature in the storage tank
with the water circuit, the PV temperature increases. Therefore, some reduction was
observed in the PVT-FG-water system compared to PV. Moreover, glass and water filters
reduces the transmitting radiation. The water circulation provides an average
advancement of 2.4%, even with lower transmission. PV has an average electric
efficiency of 13.65%, while PVT-glazing water provides 13.98% average electric



efficiency. PVT has higher I-V values. PVT achieves 2.4% larger power generation
(electricity). PV has 9.64 W of electricity, while the PVT has 9.87 W of electricity and
56.75 W of thermal power. Average overall efficiency of PVT-glazing water reached

88.45%
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Fig. 5 Current (a), voltage (b) and power generation (c) of PVT system with optical filter,
PV system with plexiglass and standalone PV system.



3. Achievements
The collaborators discussed and made a detailed research plan. Abid Ustaoglu and
Bilal Kursuncu stayed at the Institute of Fluid Science, Tohoku University, for two
weeks (01-15.11.2023) to conduct research with Junnosuke Okajima within the scope
of the Collaborative Research Project. Moreover, future studies and new project ideas
were discussed. Some of the research has been finished, and the results have been
published in the 20th International Conference on Flow Dynamics ICFD2023 and
the 23rd International Symposium on Advanced Fluid Information 2023 (AFI-2023).
We have prepared 5 Journal papers. One paper was accepted in the Journal of
Applied Thermal Engineering. The following paper is under review: "Ustaoglu, A.,
Kursuncu, B., Akgul, V., Okajima, J., Optimization of a concentrating photovoltaic
thermal system (CPVT) by considering design and operating parameters using grey
relation analysis and response surface methodology, Under review. Renewable
Energy". We are about to submit the following paper "Ustaoglu, A., Buyukpatpat, H.,
Kaya, H., Okajima, J., Kursuncu, B., Experimental investigation of Thermal and
Electrical performance of concentrating photovoltaic/ thermal system (CPVT) using
non-imaging reflector." The other two papers are being prepared for the nanofluids
used in the CPVT system and Spectral Beam Splitting Photovoltaic Thermal System.

Achievements for the expected results are as follows. SiC-H20 nanofluid shows
preferable performance compared to base fluid and Al203-H20. SiC 3%wt-H20
provided about 3.85% larger overall efficiency than Alo033%wt-H20. SiC 1%wt-H20
has a 2.78% larger overall efficiency compared to Al2033%wt- H20. CPC and
V-trough-PVTs show similar efficiencies until the incidence angle of 20°. CHC-PVT
provides better power generation per reflector area. SiC -H20 is a promising
nanofluid due to its high performance, even for a small fraction of nanoparticles.
V-trough-CPC with SiC-H20 has the largest overall efficiency until 20°. CHC
provides a preferable performance with economic design.

A spectral beam-splitting photovoltaic thermal system was investigated as a
preliminary study of a CPVT with an optical filter. PV has 13.65% electric eff. and
PVT-glazing water provides 13.98%. PVT-glazing water achieves 2.4% larger electric
power generation. PV has 9.64 W electric, PVT has 9.87 W electric and 56.75 W
thermal power. Average overall efficiency of PVT-glazing water reached 88.45%. The
advantage of optical filter may appear for higher solar radiation. It will be considered
for CPVT systems.

4. Summaries and future plans
We have carried out numerical and optimization analyses of three different types of
concentrating photovoltaic thermal systems for various nanofluids and used water as
an optical filter for a preliminary study of spectral beam splitting filter for CPVT
system to cool down the PV cell temperature and utilize from the thermal energy.

In 3nd year of the study, the numerical and experimental investigations of
concentrating photovoltaic thermal systems using nanofluids in the CPC, CHC, and
V-trough concentrators are planned. Multicriteria optimization analyses will be
carried out, including ANOVA, Taguchi, and grey relation analysis. It is aimed at
publishing five journal papers in high-quarter journals (Q1, Q2) with the results of
two years of the project. The systems will be experimentally investigated for various
operating conditions. The nanofluids will be used to improve the heat transfer rate
for higher thermal energy utilization and electrical performance improvement.
Numerical and experimental performance analyses will be carried out to investigate
the effect of the nanofluids.



5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] A. Ustaoglu, V. Akgul, J. Okajima. Performance investigation of truncated low
concentrating photovoltaic-thermal systems with V-trough, compound hyperbolic
and compound parabolic concentrators, Applied Thermal Engineering, 232 (2023),
121028, doi: 10.1016/j.applthermaleng.2023.121028.

2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[2] A. Ustaoglu, V. Akgul, J. Okajima, B. Kursuncu: Effect of nanofluid on the thermal
and electrical performances of a non-imaging concentrating photovoltaic thermal
(CPVT) system. Proceedings of the Twenty-third International Symposium on
Advanced Fluid Information, Sendai, (2023), CRF-29, pp. 91-92.

[3] A. Ustaoglu, S.B. Sungur, H. Buyukpatpat, J. Okajima: Performance Investigation
of Spectral Beam Splitting Photovoltaic Thermal System, Proceedings of Twentieth
International Conference on Flow Dynamics ICFD2023, Sendai, (2023), pp. 90-91.

3) Patent, award, press release etc.
(Patent) Not applicable.

(Award) Not applicable.

(Press release) Not applicable.
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Hemodynamic Management of Patients with Coronary Artery Stenosis Before and
After Stent Implantation

Xiaorui Song*t{, Xuezhen Wang*, Na Li*, Shigang Wang*, Chunyu Zhu**
Hitomi Anzai***. **** Makoto Ohta*** **¥*}4
*School of Radiology, Shandong First Medical University & Shandong Academy of
Medical Sciences, China
**Department of Medical Imaging, The Second Affiliated Hospital of Shandong First
Medical University, China
***Graduate School of Biomedical Engineering, Tohoku University, Japan
****Institute of Fluid Science, Tohoku University, Japan
tApplicant, ¥+IFS responsible member

Purpose of the project

(1). Promote the Sino-Japan bilateral communication on the study of biomechanics
on cardiovascular diseases.

(2). Jointly investigate the hemodynamic changes after coronary artery surgery, and
study the simulation method of dynamic mechanical modeling and simulation of
stenosis vessels and stents.

(3). Then, obtain the risk assessment of myocardial ischemia after coronary artery
surgery.

Details of program implement

IFS Collaborative Research Forum (AFI-2023), November 6 - 7, 2023, Sendai, Japan,
CRF-36.

Oral report presentation: Prof. Ohta

CRF-36 IFS Collaborative Research Forum (AFI-2023)

Background

o/

APS, WSS, ESS,
OSI, RRT, FFR

+ Ischemic heart disease is the first leading causes of death globally, accounting for approximately 16% (or 8.9
million deaths) of total deaths.

+  Coronary stent i ion is only mechanically propped up the vessel.

+  Combining the hydrodynamic parameters related to computational fluid dynamics (CFD).




2)

3)

Poster:

CRF-36 IFS Collaborative Eesearch Forum (AFI-2023)
J231030

Hemodynamic Management of Patients with Coronary
Artery Stenosis Before and After Stent Implantation

Chunvu Zhu (The Second Affiliated Hospital of Shandong First Medical Univerzsity , China),

et s

Achievements

(1). Obtain the simulation method of dynamic hemodynamics of stenosis vessels and
stents before and after coronary surgery.

(2). Obtain follow-up data after coronary artery surgery and discuss the risk
assessment of myocardial ischemia after surgery.

(3). Discuss the practical value of CFD simulation in postoperative evaluation.

(4). 1-2 research papers, including journal papers and conference presentations.

Summaries and future plans

Coronary fluid dynamics parameters have been supported in analyzing mechanical
stress in coronary artery plaques. The correlation and possibility of applying
computational fluid dynamics and structural dynamics to analyze the relationship
between biomechanics and function of coronary artery stenosis have been narrowed
down.

The combination of invasive and non-invasive imaging (which can identify plaque
anatomical features) and computational fluid dynamics (hemodynamic /
biomechanical features) can indicate the tendency of plaques to trigger
cardiovascular events.

This will help improve the risk management of coronary artery stenosis in clinical
practice.

Research results

Journal (included international conference with peer review and tutorial paper)
Not applicable

International and domestic conferences, meeting, oral presentation etc
(included international conference without peer review)

[1] Xiaorui Song, Xuezhen Wang, Na Li, Shigang Wang, Chunyu Zhu, Hitomi Anzai

and Makoto Ohta: Hemodynamic Management of Patients with Coronary Artery
Stenosis Before and After Stent Implantation, Proceedings of the Twenty-third
International Symposium on Advanced Fluid Information, Sendai, (2023), CRF-36.

Patent, award, press release etc.

Not applicable
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Subject area Fundamentals
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Project status 1st year

Density and Surface Tension Effects on Vortex Dynamics

Stefan Llewellyn Smith*¥, Yuji Hattori**++
*Department of Mechanical and Aerospace Engineering and Scripps Institution of
Oceanography, University of California, San Diego
**Institute of Fluid Science, Tohoku University
TApplicant, {IFS responsible member

1. Purpose of the project

The dynamics of singular flow structures provides insight into fundamental processes in
engineering applications such as aerodynamics and in geophysics, planetary science and
oceanography. Such reduced models can enable predictions in extreme parameter
regimes. Point sources/sinks, vortex sheets, and vortex patches are singular flow
configurations at points, along curves and within domains, respectively. We will
investigate their dynamics and equilibrium configurations in the presence of density
differences and surface tension.

2. Details of program implement

The applicant visited Sendai in from 27 November—1 December 2023. He also attended
the ICFD2023 meeting from 6-8 November 2023, virtually. The PI and Prof. Hattori
were co-convenors of session OS16: Vortex Motion. Work by the PI and his colleague
Vikas Krishnamurthy was presented by Prof. Krishnamurthy in OS16-11 Steady
Translation of a Weakly Compressible Hollow Vortex Pair.

3. Achievements

The effect of density differences on flow past sinks and sources. The Rankine ovoid is a
well-known solution, but its extension to non-constant density has not been obtained. We
have obtained numerical solutions for the two-fluid case, in which there is a recirculating
region in which fluid is pumped in and out via a source and sink. A Newton—Kantorovich
(NK) method, coupled to the alternating quadrature rule, leads to spectrally accurate
solutions.

Presently surface tension is being added to the formulation, which requires taking
curvature changes into account in the NK iteration. The next step is to include buoyancy.
This is simple to include in the dynamical boundary condition (Bernoulli equation), but
the nature of basic states needs to be considered carefully. There is the possibility that
no basic states exist, or more likely that a specific class of basic states in equilibrium
needs to be posited.

In parallel, during the visit to Sendai, the application and Prof. Hattori examined
another paper purporting to look at the current vortex sheets. This is another example
of a superficially promising approach that is not dynamically consistent. It appears that
a detailed pedagogical exposition is needed to make this point once and for all, and a
manuscript is being prepared.



Both those projects have led to reductions of the full fluid equations of motion to to
integrodifferential systems in the first case and to an asymptotic expansion with leading
order describing motion in sheets and in the bulk. We are continuing to investigate the
behavior of solutions.

4. Summaries and future plans

The applicant intends to visit Sendai in Autumn 2024 for a week to continue the project.
It is not clear whether the visit will correspond to ICFD2024 because of administrative
responsibilities at UCSD. If not, he will attend ICFD2024 virtually. We will continue to
explore surface tension effects on vortex sheet motion, as well as density effects

5. Research results
Not applicable
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Study on Conceptual Design of an Aircraft Fueled with ammonia
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Study of Turbulent Transition and Statistical Properties of Turbulence of Destabilized
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2. PRARDOAE

Helical vortices form around rotating blades of helicopter rotors, ship propellers and
many other engineering applications. The dynamical properties of the helical vortices
should be understood in detail since they affect the ow and the performance of the devices.
The helical vortices are subjected not only to long-wave instability but also to short-wave
instabilities (the elliptic instability and the curvature instability).

We study nonlinear dynamics of helical vortices destabilized by the short-wave
instabilities. How the core of a helical vortex becomes turbulent is of particular interest.
There are three possible scenarios: (i) the disturbance energy saturates when the vortex
core grows due to viscous diffusion so that the instability condition is lost (viscous
saturation); (i) the disturbance energy saturates due to weakly nonlinear effects (weakly
nonlinear saturation); and (iii) the disturbance keeps growing until the vortex core
becomes turbulent (turbulent transition). Direct numerical simulation of a helical vortex
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disturbed by an elliptic instability has been performed. Figure la shows the viscous
saturation for Rer= 5000 and the turbulent transition for Rer = 15700; small-scale
vortical structures develop after the transition (figure 1b). Which of the scenarios occurs
depends on the parameters characterizing the base helical vortex and the instability mode.
In order to predict which scenario occurs, we evaluate the saturation amplitudes for the
viscous saturation and the weakly nonlinear saturation, while a critical amplitude for
transition is estimated for the turbulent transition. The scenario of the smallest
amplitude is expected to occur. Preliminary results show that the above criterion gives
reasonably accurate prediction.
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Figure 1 : (a) Disturbance energy as a function of time for Rer = 5000; 15700 and A, =
1074,1073. (b) Iso—surface of magnitude of vorticity after turbulent transition.
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3. HIRBEDERKR
JEfEE o o I CRHNT — & DR e bz FEhi U 7. BARRIZI3 5 E05H A
AN EENDT —F DDA T — 2 AT 5 Z LI Lz, 29 LTHRLE
WA T — 2 % [EA1EAZ 5% (Proper Orthogonal Decomposition; POD) 32 Z &2k
STWHLEEDGENR POD T— R0 &R TE L. o7 Fm—FL LT
Multivariate Singular Spectrum Analysis (MSSA) 2 & 2 1EATTAUIZ HELY fHATZ.

4 FLHESHDFE
T — % ORI EIZIE, POD 23 f#C8hiE— K3 (Dynamic Mode Decomposition;
DMD) (2L 9515 POD E— X2 DMD £— KD 9 & _EA\LOFE— ROBER 5 S5IEN
BRI ESND. L LWL ENREWVGGIT FE— NI 2O DOENRRESEE
D Z EMBUNTZD, AR TIIAARE T2 2 & CTZ OREZART 2 TiEERE L.
SBIINARER T — & % B E O 2 D 5.
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[1] T. Inoue, K. Kubota, T. Ikami, Y. Egami, H. Nagai, T. Kashikawa, K. Kimura, Y. Matsuda:
Clustering method for time-series images using quantum-inspired digital annealer
technology, Comms. Eng. 3 (2024), Article number 10, doi: 10.1038/s44172-023-00158-0.

2) EF=E - BRFER - RS - OBERRFE
[2] M. Takagi, K. Kubota, R. Shigehara, T. Ikami, Y. Egami, H. Nagai, Y. Matsuda: Proposal
of Noise Reduction Method for PSP Data Using Multivariate Singular Spectrum Analysis,
Proceedings of the Twentieth International Conference on Flow Dynamics, Sendai, (2023),
0S18-7, pp. 1091-1092.
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Application of Post-Processing Method Using Digital Annealer to PSP Measurement Data,
Proceedings of the Twenty-third International Symposium on Advanced Fluid
Information, Sendai, (2023), CRF-43, pp. 124-125.
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BRI, KT —F DI N—T55F BTA A T — REFERI, 2024.2.2,

— 110 —



Project code J231043

Classification General collaborative research
Subject area Aerospace

Research period | April 2023 ~ March 2024
Project status 1st year

1.

Explainable Machine Learning for Enhancing Multi-objective Aerodynamic Design
Optimization
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Purpose of the project

Multi-objective Design Exploration (MODE) is a design framework that aims to
extract design insight and knowledge from a set of optimal designs in a multi-objective
sense. Although data mining techniques are useful for MODE, they do not fully reveal
the complexity of the relationship between design variables and objective functions.
The proposed research aims to develop a new design framework based on explainable
machine learning (XML) to uncover important design insights and enhance
understanding of the aerodynamic optimization problem. The XML techniques will
then be applied to multi-objective aerodynamic design problem. In particular, the
XML technique deployed and modified is the Shapley Additive Explanations (SHAP).
This project has product one journal paper published in Structural and
Multidisciplinary Optimization (Springer), one conference paper in AIAA SciTech
2024, and an open-source code of the implementation of the developed method.

Details of program implement

The surrogate model plays a crucial role in modern design optimization. Exploring
multi-objective design space is crucial for deriving insights that help engineers, yet
most surrogate models are black boxes, complicating interpretation. This study uses
SHAP to create an explainable surrogate model framework for better understanding
relationships between objectives and design variables in aerodynamic design problem.
We applied the framework to multi-objective aerodynamic design problems and
compared it with active subspaces and Sobol indices. Techniques to extract design
insights from SHAP values include the SHAP summary plot, the SHAP correlation
matrix, and SHAP dependence plots. Two aerodynamic design cases, inviscid and
viscous transonic airfoil designs, illustrate the potential of explainable surrogate
models. SHAP proved more effective than active subspaces and Sobol indices in
revealing the impact of design variables on objectives. The results suggest that SHAP,
active subspaces, and Sobol indices can complement each other for a comprehensive
exploration of multi-objective design relationships. Fig. 1 shows an example of the
application of the proposed method on bi-objective inviscid transonic airfoil design.

— 111 —



5

Problem definitions Results from multi-objective SHAP

Colorey by Inpu} values . Coloreq by Input_ values

High

High

it [
5

i

=

|

T
Variable
salgsg

o —

,,,,,,

0.0065 0.0092
03466 05198
0.0503 0.0755
-0.5094 -03396
02896 04342

ssc
u 3
u
o
-0.0707 -0.0471 Lo AL, os
s B . 2oy
-0.1351 -0.0901 Trailing edge direction » 5 62,.Ci
01317 01975 Trailing edge wedge angle \: G Ci
= 0
3

GuCt

(a) Zup

Figure 1: An illustration of the application of SHAP for multi-objective design
exploration applied to inviscid transonic airfoil design.

Achievements

The project has successfully developed the multi-objective SHAP method that can be
used for various multi-objective design problem, not limited to aerodynamics. The
result has been successfully published in Structural and Multidisciplinary
Optimization. To support the open-source movement, we have published the code in
GitHub to increase reproducibility; Also, other researchers can readily use the code
to support their research.

Summaries and future plans

The study investigates SHAP's effectiveness for interpreting surrogate models in
multi-objective design exploration. It aims to evaluate how SHAP can uncover
valuable insights from the design optimization space, offering utility to practitioners
and designers. SHAP is paired with Gaussian Process Regression (GPR) or
Polynomial Chaos Kriging (PC-Kriging), among other models, demonstrating its
model-agnostic nature. This paper discusses various ways SHAP can visualize and
quantify relationships between design inputs and outputs, including SHAP
correlation values and the SHAP correlation matrix. Compared to other techniques
like Sobol indices and Active Subspaces Method (ASM), SHAP provides more
straightforward interpretation and can break down the impact of individual input
variables on multiple outputs. The study concludes that SHAP, ASM, and Sobol
indices can complement each other for comprehensive design exploration. Future
research could explore SHAP-based optimization, uncertainty estimation with
bootstrapping, and SHAP's capability for trade-off analysis in constrained or complex
multi-objective problems.

Research results

1) Journal (included international conference with peer review and tutorial paper)
[1] P_S. Palar, Y. B. Dwianto, L. R. Zuhal, J. Morlier, K. Shimoyama, and S. Obayashi:

Multi-objective design space exploration using explainable surrogate models,
Structural and Multidisciplinary Optimization, 67 (2024), pp. 1-24.,
doihttps://doi.org/10.1007/s00158-024-03769-z
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2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] P._S. Palar, K. Shimoyama, and S. Obayashi: Polynomial-based Shapley Additive
Explanations for Design Exploration in Turbomachinery, AIAA SCITECH 2024

Forum, (2024), pp. 1226.

3) Patent, award, press release etc.
Not applicable
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An analysis of Self-organization of Three Dimensional Vortical Structure Derived from
Interaction between Vortical Flow and Bundle of Vorticity Lines
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AWFZENE, ELIRIRZIS T DI & kS RV R MLoiiiy) O hRa vo— (%
i) O EAMERIC K VB ESND 3 RICOMEED A =X e LT, iR RO R
R =N BT DI O R AEE B DRHEN S D = & A HE BT NS — B )
PEILRODOY R 2 b— 3 v, HEHNC L VA LNNCT . £, = 7k oFE 15O
TR A~ DA N 5. ZOETIE, 85T &V 9 L L fROF & 5 T
7 MO " ODWIUTER L, ZIVOIAHAET DM AEERIC LY 3 RotOiEE 1 ok S
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ELUEI E 7o kR 2 72 B B OWAL CTHRAET DiliE, K& - WS OBREOM, FEOMIZE -
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ROfFHEMECRE SEET D, MERY L - iy RVSRITREEESCImE O R E AW S
MDD, LR CIImRAERICZ Dk AR o —1272 2 2 & 23BHR & BT IC
X W R&EH (Nakayama, Doi and Hattori, ICFD2020(AF12020)), (2% OFEAITIERE & R
2 —IZ R DL, BRA IRIRED/ N F — N2 D Z L DVRSHT. (Nakayama and Hattori,
ICFD2022(AF12022), ICFD2021(AF12021)). &LUEHAD 3 RITHEMEE I IARMA TH 503, TR
2l U GRS ER T 21N RLo bR e O— R iR OGS I B8 L 0D 2
ENBZ B, ZOFEBHNRD 3 RTHEED A I = X AMEHICE G545 LIS, Bix 2458
(ZHVT B IRDFEAN L RFHED A FSCHHEN BT & B 2 bivb.

AWFTETIE, v—Av bR e =03 2 e 255 < iz AR B0 TR
¥ RV O SR COfEa] & il B9 2 Bl 2170y, —HREEJ7PERLTE> DNS(Direct
Numerical Simulation)(Z 33V N CELIEIEF ORI, W S RVROMA BAERIZ X 2l oReE
(DWW THRHT AT 5 .

2. HMIRBROHE
ABFZETIL, WREISI IR - 72 1807 (swirlity) O ZA LI U TR > RV BGE Tl
[, Z0& XIS S RAVRORERIO T &5 SIS U TS AET 5 2 & 2l
¥ RIVER - R FIEAE &R N RVEROBERREE O RSy & il JPDF (f5 &
MR R (2K VRER L=, 2 2C, switlity 1%, & 2 Wi Eo~2 MVGORE TSy
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FETE5. £2C, X1 T, @BOFFEBIZBNT, REEST MVORIFIRG DA
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L DEIFESY (VX@R B viDT T I T v O 5E G LT DI LY, & WS

— 115 —



2 X 1 2R DhERlFEE EOE AR D 2 > Z—, F AR LD
7 "MV ST T @, WONTIRGROERA ST A2 SV v, JES AR R
SMEHTRICHED BT, BEHE 0 ISHERT 2 @l KV _Lrh) & Ol 3%
AL TWA.

N5, X1 O Sy RSN, BERPEmE B CREEHRTY (ZhER L7eds KD B s FElZ
723> THEA TN D, Il S ROVIRORERNE, #EEERI D > 728D kR v 2—=0 swirlity
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[1] K. Nakayama: Vortical flow characteristics derived from local flow geometry and relationships to bundle
of vorticity lines in organization of vortical structure, 76th Annual Mtg. Amer. Phys. Soc. Div. Fluid Dyn.,
Washington D. C., (2023), L39.00005.
[2] K. Nakayama, Uchima K. and Y. Hattori: An analysis of self-organization of three dimensional vortical

structure derived from interaction between vortical flow and bundle of vorticity lines, Proceedings of the
Twenty-third International Symposium on Advanced Fluid Information, Sendai, (2023), CRF-45, pp.
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Advancement of Measurement Technique for Oxygen Enriched Flame under High Pressure
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A Study on Nano-scale Interfacial Phenomena between Surface-modified Nanoparticle and
Dispersed Media
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1. Purpose of the project
The purpose of the project is to investigate the aeroelastic response of the
multidirectional wings, design and optimize a suitable multidirectional wings for the
aero-train, obtain a realistic and completed method of parametric modeling,
optimization and analysis, and construct an effective means for the aerodynamic study
on the wings of aero-train.

2. Details of program implement

This study elucidates aspects inherent to the trailing-edge noise of multi-directional
wings, such as the main generating regions of noise, the main noise contribution
frequency, noise directivity, sound pressure level (SPL) attenuation characteristics, and
how trailing-edge vortex shedding influences the near-field sound generation and
far-field propagation. Initially, a three-dimensional model of a multi-directional wing
with several interconnected structures was constructed. Then, two multi-directional
wings are aligned in tandem to mimic the actual wings of an aero-train body, and the
relative spacing (Rs) of two multi-directional wings was set as 4C (four times the chord
length of the wing), 5C, 6C, and 7C. The unsteady flow fields and sound fields around
the multi-directional wings were solved using a hybrid numerical method consisting of
large eddy simulation (LES) combined with Moéhring acoustic analogy theory. A highly
resolved flow field is used to conduct sound source diagnostics, and the velocity
spectra, sound pressure level spectra, and turbulence intensity of trailing-edge noise
are obtained. The near-field flow obtained by LES, possessing pressure fluctuations
and other components, was used as the input data for Mdhring acoustic analogy theory
to predict the propagation of sound. The solver-related parameters are displayed in
Table 1.

Table 1. Solver parameters

Fluid simulation Acoustic simulation
Solver precision Double precision Solver MUMPS
Solver type Implicit, transit, density based | Window Functions | Hanning Window
Turbulence LES Acoustic analogy Mohring
Spatial Difference Method Second Order Upwind
Gradient evaluation Green—Gauss node based
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The multi-directional wing consists of a main wing, a ground effect wing (GEW), an
aileron, a wingtip winglet, and a pressure-holding winglet. The reference wing for
designing is the NACA4412 airfoil, which proved to be the most suitable wing for the
WIG effect in Ahmed’s experiment. The wing’s three-dimensional geometric-model

structure is presented in FIG.1.

yin Wing

T

Pressure-holding winglet
GEW

c1 Q<
1}

FIG. 1 Three-dimensional geometric model structure of the multi-directional wing.

Considering the presence of a large curvature in multi-directional wings, unstructured
meshes were used for meshing. The specific grid strategy is presented in Table 2, and
the mesh scene is shown in FIG. 2.

Table 2. Grid strategy

Parameters Values (mm) | Number of meshes
Mesh size at the leading edge and the trailing edge 10 193079
Mesh size at the wing surface 20 594324
Tail flow zone 40
Flow field area around the airframe 80
Core area of the sound zone 120
Sound zone 320 29928849
Fluid zone 960 1567109
First layer of the boundary 4*103
= XX P
d XIXIX(X /

Sound zone 3

Core area of st

}
XX
s
A)

AWA’A‘”
A

4

(a) !
FIG. 2 Grid strategy schematic: (a) gridded zones and (b) the mesh scene and the
boundary layer distribution.

Flow field area around the airframe  \Tail flow zone

3. Achievements

(1) Regardless of the relative spacing, the primary frequency components and
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generation areas of trailing-edge noise remain consistent. The source region’s noise
components were predominantly low-frequency noise below 200 Hz, primarily
originating from the wing trailing-edge, the wake area, and the aileron tip vortex. This
low-frequency noise dominated sound propagation due to its diffraction and
penetration capabilities. Additionally, the intermediate-frequency noise, approximately
14 dB lower than the low-frequency noise, was primarily generated by the turbulent
motion of the airflow in the sound source region(FIG. 3 and 4).

140 130 —
E — B , jﬁs#c
C o 125 + =5C
130 B, -5C JRs—sc
— N ——— Ry=7C | _ 120 [1m92 1187 sz=7C
— L a 1172 172 7]
= g
=110 S 1o =
<) &
% 105 |
=100 S
@ - 100 f
N0 F 95
80 . TN TN AT TR S S TN T T A TSNS S N T N N 90
0 400 800 1200 1600 2000 £=[0-200] f=[200-1500] f=[1500-2300] f=[0-2300]
FIG. 3 Curves of frequency response FIG. 4 The OASPL integrated with
functions of the sound source region. different frequency bands.

(2) The interference between the front and the rear wings, subject to varying relative
spacings, plays a pivotal role in dictating the total acoustic energy within the source
region. The turbulence in the rear wing region is dramatically amplified by the vortex
shedding occurring at the front wing’s trailing edge, culminating in a significant surge
in the total acoustic energy. As shown in FIG. 5, a relative spacing of 6C sees the least
total acoustic energy, attributed to the diminished interference between the wings and
the front wing’s role in obstruction the intake airflow within the rear wing region.
Consequently, in the design process of the aero-train’s multi-directional wing tandem
spacing, the judicious utilization of mutual interference between wings can mitigate the
gross aerodynamic noise while maintaining dynamic efficiency.

Mean x-velocity (m/s) T .

-60 -45 -30 -15 0 15 30 45 60 75 90 105 120 140

.

The front and rear wings The side view

FIG. 5 Instantaneous iso-surface of Q = 12000 S-? around the multi-directional wing
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(3) A multi-tier analysis of flow field has been conducted to better understand the
generation and propagation mechanisms of trailing-edge noise. This was achieved by
studying time-averaged energy fluctuations, helicity, and Reynolds stresses of various
components. The disordered airflow around the pressure side of the multi-directional
wing, exhibiting airflow separation, triggers vortex noise. Large-scale ring vortex
structures at the wing’s trailing edge and long strip vortex structures at the aileron tips
generate significant energy, leading to strong low-frequency noise. The orbital wall
surface amplifies the trailing-edge noise, with the GEW exhibiting a higher sound
energy than the main wing.

4. Summaries and future plans

Summaries: The trailing-edge noise generated by multi-directional wings aligned in
tandem on an aero-train body causes significant noise pollution. In this study, by
changing the relative spacing between the front and the rear wings, numerical
predictions of trailing-noise near-field generation and far-field propagation were
produced for 0.3 M using the compressible hybrid LES/Mo6hring method. A multi-tier
discussion of the flow field was conducted to better understand the mechanisms of the
generation and the propagation of trailing-edge noise.

Future plan: Considering the mutual interference of the front and rear multi-directional
wings, explore the main generation area, main contribution frequency, propagation
characteristics and sound source intensity difference between the front and rear wing
fuselage area of the multi-directional wing aerodynamic noise of aero-train, based on
which, the active flow control is used to realize the noise reduction of the
multi-directional wing aerodynamic noise, and explore the possibility of applying to
the real vehicle.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] Chenguang Lai, Lihua Liu, Shuai Feng, Shihao Wen, and Guangtao Zhai: Experimental and
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of Chongging University of Technology (Natural Science), 2023, 37(10): 17-27, doi:
10.3969/j.issn. 1674-8425(z).2023.10.003.

2) International and domestic conferences, meeting, oral presentation etc. (included
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[2] Yujie Zhu, Chenguang Lai, and Shigeru Obayashi: Numerical analysis on aeroacoustics of
multi-directional wings aligned in tandem of the aero-train, Proceedings of the Twenty-Third
International Symposium on Advanced Fluid Information, Sendai, (2023), CRF 61, pp.
169-172.

3) Patent, award, press release etc.
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Purpose of the project

This is the continuing work from the last two years about the shock wave-particles
interaction. High-speed flows of gas mixed with solid particles are often observed in
the various engineering applications as well as in the natural phenomena. The
engineering applications include solid-propellant rocket motor, shock-induced
powder compaction, and needleless drug delivery. An example of natural phenomena
1s volcano eruption. The primary objective of the proposed research is to understand
the gas-particle mixture dynamics. In the third year of this project, we will continue
focusing on the interactions between multiple shock waves produced by the multiple
particles. The particles behind the bow shock(s) are accelerated by the bow shock
interaction, and the direction of the acceleration depends on the size of the particles
and the distance between the particles. The mechanisms of the particle dynamics
induced by the shock wave interaction are to be investigated in this one-year project.

Details of program implement

The shock tube facility used in this study is unique in that a modified Split-
Hopkinson Pressure Bar actuated by a high speed servo valve is used to generate
shock waves. Driven section of the tube has open end where the shock wave starts
propagating spherically (Figure 1).

Filling Valve
Driver Section Pressure Transducer
Buffer Chamber
Driven Section

Piston 0.019m
) | \ \\
‘

( N\
0.0254m

0.6m 0.6 m

0.144m

Firing Valve

0.73m

, S
Figure 1: Shock tube facility with driven-section opening

Three different solid particles are used for this study (Table 1). Particles with 1 mm
and 3 mm diameters are made of glass, and their density is about 1900 kg/m3, and
the particles with 6 mm diameter are made of plastic of which density is about 330
kg/m3.
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Table 1: Properties of particles

Diameter Mass Density
1 mm 1.5 mg 1900 kg/m3
3 mm 40 mg 1900 kg/m3
6 mm 56 mg 330 kg/m3

Shadowgraph technique is used to visualize the shock wave propagation and the
induced particle motions, and a high speed camera (Photron Fastcam Mini AX200)
is used to capture the flow field image at frame rate of 40,000 fps, shutter speed of
1/3,800,000 sec, and the spatial resolution of 384x256 pixels.

Initial pressures in the driver-section are selected to 24 atm, 34 atm, and 51 atm.
Driven-section is open to the atmosphere. Therefore, three different values of the
initial pressure ratio (ps/p1=24, 34, 51) are used for this study.

3. Achievements

Figure 2 shows typical shadowgraph images of the shock waves and particles with
different particle diameters extracted from the movie clips (ps/p1=24). Black area in
the right-hand side of the images shows the driven-section outlet of the shock tube.
Motion of a particle is manually tracked in some consecutive frames of a movie clip
and then the particle speed is calculated. Red lines in Figure 2 show the direction
of the particle motion tracked in this method. Direction of the particle motions
spreads in the expanding angles from the driven-section outlet.

The particles also interact and collide with other particles, and as a result highly
random motion of the particles is observed in various direction.

(a)1 mm (b) 3 mm - (c)6 mm

Figure 2: Shadowgraph images of particles in high speed flow (ps/p1=24).

Total of nine different conditions (three particle sizes and three initial pressure
ratios) are tested. In each case four particles are randomly selected and the speeds
of these particles are estimated from the movie, as well as the mean particle speed.
Figure 3 shows the mean particle speed for all nine cases. Error bars show the
standard deviation of the four particle speeds in each case. As observed in Figure 3,
the particle velocities vary in the broad range for all cases. This is probably because
the particles placed in the shock tube interact before these particles come out of the
driven-section outlet. Therefore, in order to analyze the particle-shock wave
interaction more accurately, the experimental design must be improved, and it is
left for the future studies.
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Figure 3: Particle speeds behind shock wave as a function of particle diameter.

Average particle speeds decrease from 1 mm to 3 mm, and increase for 6 mm
diameter particles. This is because the density of the particle is lower for 6 mm
particles. For the better analysis of the particles-shock wave interaction, more
particle diameters with the same material density should be tested which is again
left for the future studies.

From the one-dimensional shock tube theory, the Mach number of the shock wave
propagation (M) and the speed of the induced flow (u,) are calculated using the

following relations.
+1
M= L= (p—z - 1) +1
2y \py
2y

a
wp = 2(B2-1)( L
Y \P1 p_2+)/—

P v+1

1/2

where y is the specific heat ratio and a is the speed of sound. Pressure ratio across
the shock wave (p2/p1) can be obtained from the initial pressure ratio (ps/p1) using

the relation
=2y/(y-1)

b \/ZV[ZV+(V+1)(%— )]

pi_pe), - (E-1)

In Figure 4 the shock wave Mach number and the speed of the induced flow
calculated using the equations above are plotted as function of initial pressure ratio.
The shock wave Mach number (M) and the induced flow velocity (u,) start
decreasing when they come out of the driven-section outlet since the phenomena
change from the one-dimensional motion to spherical motion in the atmosphere.
Therefore these values from one-dimensional analysis cannot be directly compared
with the measured particle speeds in the atmosphere. However, the differences
between one-dimensional and spherical propagations are still small near the outlet.
Particle speeds displayed in the previous figures are also plotted in the same figure.
It 1s obvious that the particle speeds are generally significantly lower than the
induced flow speed.
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Figure 4: Wave propagation Mach number and flow and particle speeds behind
shock wave.

4. Summaries and future plans

Solid particles are placed in the supersonic flows, and the particle speed of the
induced motion is estimated from the high speed camera images. The particles have
significantly slower velocity compared to the flow speed theoretically calculated from
the shock tube initial pressure ratio. Furthermore, at each test the particle speed
varies in a wide range. This is probably because the particles interacted each other
before these particles come out of the shock tube. In order to study the particles-
shock wave interactions, the experimental design needs to be improved more.

This is left for the future studies.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] K. Tajiri, B. Wavrunek, G. Viyyapu, A. Yakeno, S. Hamada: Propagation of Spherical
Shock Wave and Its Interactions with Particles, 34t International Symposium on
Shock Waves, Daegu, South Korea, (2023).

[2] K. Tajiri, G. Viyyapu, A. Yakeno: Study of Shock Wave-Particles Interaction,
Proceedings of the Twenty-third International Symposium on Advanced Fluid
Information, Sendai, (2023), CRF-62, pp. 173-175.

3) Patent, award, press release etc.
Not applicable
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1. Purpose of the project
Ammonia water solution is expected as a carbon-neutral fuel for internal combustion
engines however the fundamental combustion characteristics of as the laminar
burning velocity and the response of its flames to stretch has not be well-understood.
In addition, due to the lack of measured data on the properties of the flame, chemicals
reaction mechanisms for modeling the combustion of the mixture have not been
sufficiently optimized and validated. The purpose of this study is to investigate these
fundamental premixed flame characteristics of mixtures of ammonia water and other
fuels such as methane and hydrogen using a constant volume combustion chamber
and to optimize and validate chemical reaction mechanisms with the measured data.

2. Details of program implementation.
In first year of this program, experiments were conducted at IFS using a high-
pressure constant volume combustion chamber at the High-Speed Reactive Flow Lab
to measure the unstretched laminar burning velocity and the Markstein number of
NHs-He-H20-Air and NH3z-CH4-H20-Air flames. The of water vapor dilution ratio Znzo
and Hz in the flames were investigated. Furthermore, numerical analysis of the flame
chemistry was conducted.

In the second year of the program, the measured data from the previous year were
employed to validate a detailed reaction mechanism by Okafor et al. [1], which is
targeted for optimization in this study. A more comprehensive numerical analysis of
the chemistry of the flames were conducted at Kyushu University to underpin the
important chemical reaction steps that may require optimization. This was done
through a comparative analysis of the chemical kinetics of the hydrogen-blended
flames and the methane-blended flames using the reaction mechanism by Okafor et
al. [1] and that by Nakamura et al. [2].

It was found that Okafor’s mech satisfactorily predicts the measured unstretched
laminar burning of NH3-CH4-H20-air flames, capturing the diluting effects of water
vapor on the laminar burning velocity as shown in Fig. 1. However, the mechanism
underpredicts the measured data for NHs-Hz-H20-air flames as shown in Fig. 2.
Okafor’s mech, even though satisfactorily models the combustion of ammonia-air
flames and hydrogen-air flames, may not model the interaction of ammonia chemistry
and hydrogen chemistry. The laminar burning velocity of NHs-Hz-H20-air flames is
more satisfactorily predicted by Nakamura’s mech as shown in Fig. 2.
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Fig. 2 Variation of the unstretched
laminar burning velocity with the water
vapor dilution ratio in NHs-Hz-H20-air
flames. The experimental data for Zuzo =
0 is from Lhuillier et al. [3]

Fig. 1 Variation of the unstretched
laminar burning velocity with the water
vapor dilution ratio in NH3-CH4-H20-air
flames.

Sensitivity coefficients for the NHs-H2-H20-air flames was calculated using Okafor’s
mech for comparison with results from Nakamura mech as shown in Fig. 4 and 5. Both
reaction mechanisms predict essentially similar rate limiting reactions for the flame. A
noteworthy observation from the results of both reaction mechanisms is the relevance of
the N2Hx reactions to the prediction of the flame speed of the hydrogen containing flames.
These reactions are important in modelling the interaction between the hydrogen
chemistry and ammonia chemistry in flames with a relatively high concentration of both
fuels. They were found to be less important in the methane-containing flames in this
study. It is considered that the underprediction of the measured data by Okafor’s
mechanism is mainly due to the influence of these N2Hx reactions and were marked for
optimization in future studies.

02+H<=>0+OH w H+02<=>0+OH =
H2+0<=>H+OH - H+NO+M<=>HNO+M =
NH2+NO<=>NNH+OH = NH2+NO<=>NNH+OH f—
H2+OH<=>H+H20 ] OH+H2<=>H+H20 =
NH2+N<=>N2+2H = NNH<=>N2+H =]
2NH2<=>N2H2+H2 ] O+H2<=>H+OH =)
NH2+NH<=>N2H2+H =] N2H2+H<=>NNH+H2 =
NH2+OH<=>NH+H20 = N2H3+H<=>N2H2+H2 B
HNO+H<=>NO+H2 = NH+O<=>NO+H a
H+OH+M<=>H20+M = Zino H+02+H20<=>HO2+H20 "= Zino
NH3+H<=>NH2+H2 =i 04 NH2+0<=>HNO+H = m04
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NH2+O<=>HNO+H  E=H ‘ ‘ ‘ ‘ HNO+H<=>H2+NO ‘,; ‘ ‘ ‘ ‘
‘ ‘ ‘ ‘ | ‘ ‘ ‘ ‘ |
02 0 02 04 06 08 -0.1 0.1 0.3 0.5 0.7

Fig. 4 Sensitivity coefficients for NHs-
Ha-H20-air flames calculated using
Nakamura’s mech.

Fig. 5 Sensitivity coefficients for NHs-
Hs-H20-air flames calculated using
Okafor’s mech.
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Achievements

Detailed analysis of the chemistry of the flames have revealed important chemical
reaction steps which will be optimized in the future to improve the prediction of the
flame speeds by Okafor’s mech.

Summaries and future plans
It has been shown that Okafor’s mechanism does not satisfactorily predict the
unstretched laminar burning velocity of hydrogen blended ammonia-water flames
owing to the influence of the N2Hx sub-chemistry. In future studies, the reaction rates
and the thermochemical properties of the N2Hx reactions and species, respectively will
be optimized for Okafor’s mechanism.

Research results
Journal (included international conference with peer review and tutorial paper)
Not applicable.

International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
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Antibacterial Filament Composites by a Field-assisted Flow Focusing Method

Hidemasa Takana*t, Dylan Edmundson**
Anthony B. Dichiara**{f
*Institute of Fluid Science, Tohoku University
**College of Forest Resources, University of Washington
TApplicant, $¥Non-IFS responsible member

Purpose of the project

The overall objective of this project consists of producing macroscopic filaments
comprising aligned TEMPO oxidized cellulose nanofibrils (CNFs) pre-adsorbed with
silver nanoparticles (AgNPs) for antibacterial applications.

Details of program implement
This research is divided into two main tasks, as described below. The first task will
be completed at the University of Washington under PI Dichiara’s leadership, while
the second task will be performed at the Institute of Fluid Science under the
supervision of PI Takana.

1) Hybridization between CNFs and AgNPs: Faceted AgNPs will be synthesized under
environmentally benign conditions using TEMPO oxidized CNFs as both shape-
regulating, reducing and stabilizing agents, according to our previously established
procedure. Briefly, Tollen's reagents ([Ag(NHz3)2]+) will first be prepared by adding
aqueous ammonia hydroxide of 2 wt% to 2 wt% silver nitrate (AgNO3) solution until
the newly formed solid precipitate dissolved to give a clear solution. Then, the
resulting Tollen’s reagents will be added to the CNF suspensions in various
proportions and the mixtures will be heated to 80 °C in a water bath for 120 min
under constant stirring. After cooling to room temperature, the mixtures will be
reacted with different quantities of H2O2 to modulate the shape and size of AgNPs.
As-synthesized CNF/AgNP dispersions will then be centrifuged and washed with
deionized water prior to their implementation in the field-assisted flow focusing
channel. The CNF/AgNP dispersions will be characterized by absorption spectroscopy
and transmission electron microscopy.

2) Preparation and characterization of hybrid filaments: As-prepared CNF/AgNP
dispersions will be fed through a continuous flow-focusing microfluidic channel to
prepare macroscopic filament composites. Pristine filaments comprising TEMPO-
oxidized CNFs in the absence of AgNPs will also be generated for comparison
purposes. The fabrication procedure is well described in our previous publication.
Different channel geometries and applied voltages will be examined to study
respectively the effects of electric field on the nanoparticle orientation in material.
The structure of the filament composites will be characterized by scanning electron
microscopy, energy dispersive spectroscopy, and X-ray diffraction, while their
electrical and mechanical properties will be assessed using a Keithley source meter
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unit equipped with a two-probe system and a uniaxial tensile tester, respectively. In
addition, the antibacterial activity of the hybrid filaments against Escherichia coli
(gram-negative) and Staphylococcus aureus (gram-positive) will be studied based on
our film co-culture method.

Achievements

Tollen’s reagent (i.e. silver ammonia solution, Ag(NH3)2OH), prepared by the
dropwise addition of 5 % ammonia into a 2 mM silver nitrate solution, was added to
the CNF suspensions at various ratios. The mixtures were brought to 80 ‘C under
vigorous stirring until the immobilization of zero-valent nanoparticles (NPs) on the
CNF surface was completed from the subsequent adsorption and reduction of Ag ions
on the CNF surface. The reagentless formation and immobilization of colloidal Ag NPs
onto the CNF surface was visualized by the color change of the liquid mixture, which
turned from nearly translucent to golden yellow after a few minutes (Fig. 1a). The
colloidal AgNPs dispersions darkened with increasing Tollen's reagent concentrations,
indicating that more AgNPs formed at higher silver precursor concentrations. The
formation of AgNPs was further confirmed by the surface plasmon resonance (SPR)
peak at 410 nm in the absorption spectra (Fig. 1b). As the Tollen's reagent
concentration increased, the intensity of the absorption peak increased, but the SPR
peak remained at approximately 410 nm, indicating that the size and shape of AgNPs
was similar in all cases.
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Figure 1: (a) Photos of the aqueous CNF and Tollen reagent mixture before and after

reaction at 80 °C under constant agitation. (b) UV—vis absorption spectra of aqueous
Ag@CNF dispersions prepared with different amounts of Tollen's reagents.

The resulting Ag@CNF suspensions were then fed through a continuous flow-
focusing microfluidic channel to prepare macroscopic filament composites. Pristine
filaments comprising pure CNFs without any AgNPs were also generated for
comparison purposes. The diameter of as-prepared filaments remained relatively
constant around 85 pum regardless of the Ag content. The Ag content of as-prepared
filaments can be simply tailored by adjusted the addition level of Tollen’s reagent into
the CNF suspension prior to the flow-focusing process, as demonstrated by filaments’
absorbance measured using a UV-vis spectrophotometer equipped with an integrating
sphere and following Beer’s law (Fig. 2).
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Figure 2. Evolution of the filament composites’ absorbance as a function of their Ag
content

Electron microscopy coupled with energy dispersive spectroscopy (EDS) was
conducted to examine the distribution of Ag NPs within the filaments. High-
resolution SEM micrographs showed the presence of nanoparticles with different
shapes and sizes on the external surface of the filaments. This may indicate the
tendency of Ag metal to form clusters comprised of several smaller nanoparticles.
Representative EDS mapping of the surface and cross-section of filaments
nanocomposites prepared at the highest Ag content revealed that the Ag NPs
(highlighted in green) were evenly dispersed within the filament (Fig. 3).

Figure 3. Representative SEM images and EDS mapping of the surface and cross-
section of a filament nanocomposite prepared at a Ag addition level of 0.7 mL

4. Summaries and future plans
The next reporting period will focus on characterizing the antioxidant and
antibacterial properties of as-produced Ag@CNF filament composites. The following
methods will be implemented.

1) DPPH method based on the study from Bhakya et al. 2016

Soak 2-3 samples (i.e. filament replicates) into DPPH solution (1-5 mL) prepared
at 1 mM in methanol and vortexed thoroughly. Incubate the mixture at room
temperature in the dark for 30 min. Measure the absorbance at 517 nm using a UV-
Vis spectrophotometer. DPPH without any sample is used as a control and methanol
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is used as the blank solution. The free radical scavenging activity can be expressed as
the percentage of inhibition determined with the following formula:

A —
%scavenging = CA ® x 100
Cc

2) Hydrogen peroxide method from the work of Keshari et al. 2016

Soak 2-3 samples (i.e. filament replicates) with 0.3 ml phosphate buffer (50 mM,
pH = 7.4) and 0.6 ml hydrogen peroxide solution (2 mM H2Oz in phosphate buffer, 50
mM, pH = 7.4). The mixture is vortexed thoroughly and incubated for 10 min prior to
measuring the absorbance at 230 nm using a UV-Vis spectrophotometer. The H202
scavenging activity can be calculated based on a similar equation that used in the
DPPH method.

3) Differential scanning calorimetry (DSC)

Place 3-4 mg of material in a crucible to be loaded in the DSC instrument using
the following temperature program: heat from room temperature to 350 °C at a rate
of 5 °C /min under an oxygen atmosphere (50 mL/min). The onset temperature values
from the DSC oxidative thermograms will be analyzed to determine the antioxidant
properties of the materials.

4) Antibacterial properties

We propose the use the diffusion method to assess the antimicrobial susceptibility
of the Ag@CNF filament composites. To this aim, agar plates will be inoculated with
either a gram-positive or a gram-negative bacteria and the samples will be placed on
the agar surface. After incubation at 37 °C for 24 h, the size of the zone of inhibition
will be measured.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] H. G. Wise, H. Takana, and A. B. Dichiara: Dynamic Assembly of Strong and
Conductive Carbon Nanotube/Nanocellulose Composite Filaments and Their
Application in Resistive Liquid Sensing, ACS Applied Materials and Interfaces, Vol.
15, No. 30, (2023), pp. 36647-36656, doi: 10.1021/acsami.3c03906.

2) International and domestic conferences, meeting, oral presentation etc.

[2] A. B. Dichiara, H. G. Wise, and H. Takana: Dynamic Assembly of Strong and
Conductive Carbon Nanotube/Nanocellulose Composite Filaments, Proceedings of
the Twentieth International Conference on Flow Dynamics, Sendai, (2023), OS5-1,
pp. 462-463.

3) Patent, award, press release etc.

(Patent) Not Applicable

(Award) Not Applicable

(Press release)

[1] Techplus, HdtK, CNF IZ CNT ZiEA SECTH- 2 mEEEE S BV e — A
ZB%s ), July 19, 2023.

(2] AR, (E oK, FALKSHilliE  RE#ENOt o —I2), July 31,
2023.

[38] H#EXTECH, CNT|Z CNF % & X f} 1] CH i & EiE M2 iz, kit o —n,
August 1, 2023.

[4] NIKKEI Tech Foresight, [HLK, mis#E o CNT - CNF EEMEE AHME B350
gl ], August 1, 2023.
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Transient Structural Analysis of the Interaction of Stiffness and Compliance
between Aorta and Carotid Arteries by Performing Numerical Simulations
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1. Purpose of the project

This project aims to investigate the influence of a variety of parameters — blood pressure
level, pulse pressure, artery stiffness, and artery morphology — on the mechanical
property of aorta and carotid arteries, by performing structural analysis simulations
with patient-specific blood vascular models, while a series of artery stiffnesses defined
at different sections of the arterial model to mimic more sophisticated and realistic artery
wall functions.

2. Details of program implement

Arterial stiffness has been established as a predictor of adverse cardiovascular events
[1]. As an independent predictor of hypertension, arterial stiffness can be described as
the loss of distensibility and compliance of blood vessels from an engineering
perspective. Studies have shown that stiffness of major arteries are also associated
with the generation of atherosclerosis and the development of vascular dementia [2-3].
Interestingly, while studies have focused on aortic stiffness, its influence on other main
cardiovascular arteries have largely been neglected. To address this problem, an
advanced computer simulation method has been established in this study to conduct a
comprehensive structure analysis for a patient-specific aorta-carotid system under
realistic physical and physiological environment. The simulated data will then be
analysed to evaluate the influence of aorta stiffness on carotid arterial compliance, as
well as to investigate the interaction of stiffness and other key mechanical properties
between the aorta and carotid arteries.

A patient-specific vascular geometry of the aorta and carotid arteries was used in this
study. To investigate the impact of aortic stiffness on carotid arteries, a series of
simulations were performed with different levels of Young’s modulus respectively set
for different sections of the aorta. Two realistic pressure wave was applied on the inner
wall of the entire geometry, with pulse pressures (PP) of 5994 Pa (PP1) and 7369 Pa
(PP2), while fixed supports were defined at all openings of the model. Linear transient
simulations of a single-layered aorta-carotid model were then performed in ANSYS
Workbench 2020 R2 (ANSYS, USA).

The effects of increased aortic stiffness on different segments of the aortic tree, including
the ascending, descending aorta, and the aortic arch were explored.

The compliances of all segments of the aorta and carotid arteries at two pulse pressures
significantly decrease with the increases of the Young's modulus. The highest compliance
difference is noted in the ascending aorta and the aortic arch, 57 and 54 % decrease
between Case 1 and Case 5 (Figure 1).
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We further applied different levels of Young's modulus to different segments of the aorta
across cases. This allows us to examine whether fixed aortic Young's modulus for
different regions of the aorta can affect either the left or right carotid arteries. Both left
and right carotid arteries showed a decrease in the local compliance with the increase of
the aortic Young's modulus. Across both pulse pressures, the left carotid artery was less
compliant than the right carotid artery, with a percentage decrease of 11 and 7 %,
respectively. Moreover, we observed changes in local compliance with significantly lower
levels around the bifurcation and anatomical bends of the carotid arteries when aortic
compliance was reduced.
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Figure 1: Loss of compliance between cases with different Young’s modulus under two
pulse pressures.

3. Achievements

This study created patient-specific arterial models and develop a novel computer
simulation model aimed at evaluating the intricate mechanical interactions between
the aorta and carotid arteries, with a series of arterial stiffness on different sections
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studied. Furthermore, the quantitative results of the influence on vascular deformation
and compliance by varying arterial stiffnesses have been obtained.

4. Summaries and future plans

Through the first two years, we have obtained results indicating that the change in
Young's modulus and pressure conditions create substantial impacts on the mechanical
properties of the artery. In future, the influence of varying stiffnesses for different
arterial sections on a range of mechanical properties are expected to be analysed.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] M. Petrova, Y. Li, A. Gholipour, H. Kiat, C.S. McLachlan: The influence of aortic

stiffness on carotid stiffness: computational simulations using a human aorta
carotid model, R. Soc. Open Sci. 11(2024): 230264.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
Not applicable.

3) Patent, award, press release etc.
(Patent) Not applicable.

(Award) Not applicable.
(Press release) Not applicable.

6. Reference

[1] P. Palatini et al., Vasc. Health Risk Manag., (2011), 725.

[2] A. de Havenon, K.-H. Wong, A. Elkhetali, J. S. McNally, J. J. Majersik, N. S. Rost,
Am. J. Neuroradiol., 40(8), (2019), 1369-1373.

[3] A. F. Logsdon, B. P. Lucke-Wold, C. L. Rosen, J. D. Huber, Primer on Cerebrovascular
Diseases, (2017), 162—167.
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Explore the Shaping Effects of Arteriovenous Fistula on Haemodynamics in
Patients Receiving Haemodialysis

Mingzi Zhang*t, Makoto Ohta**{+
Itsu Sen*, Yujie Li*, Hitomi Anzai**, Takeda Kazuki**
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**Institute of Fluid Science, Tohoku University
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1. Purpose of the project

By harnessing breakthroughs in image segmentation, design refinement, and
computational fluid dynamics, this project aims to unveil the optimal configuration for
arteriovenous shunts, ensuring superior hemodynamic efficiency. The goal is to mitigate
the risk of arterial occlusion or stenosis following treatment.

2. Details of program implement

Research suggests that the branching angles of arteriovenous fistulae (AVF) play a
pivotal role in shaping the growth and progression of the associated vasculature.
Investigations have unveiled irregular flow patterns and wall shear stress (WSS)
distributions [1,2]. Yet, past studies predominantly concentrated on AVF models
featuring acute anastomosis angles, overlooking those with obtuse angles. Bridging this
research gap, this project delineated and examined geometries spanning diverse angles
to assess their influence on disturbed flow and crucial hemodynamic parameters such as
WSS distribution.
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Figure 1: Geometric parameters of the arteriovenous fistulae supporter design
determined to be analysed. Design object parameters are coloured in red.

Following the determination of design parameters, a series of models representing
arteriovenous fistulae (AVF) with diverse angles, anastomosis heights, and curvatures
(as illustrated in Figure 1) were constructed and discretised into approximately three
million elements for computational fluid dynamics (CFD) analysis. Ansys CFX, a

— 156 —



commercial software developed by Ansys Inc., USA, was utilised for the simulations,
which were conducted on the Integrated Super-computation System housed at the
Institute of Fluid Science, Tohoku University. Time-varying boundary conditions were
imposed on the proximal artery and vein outlet, set at flow rates of 231 ml/min and 173
ml/min, respectively.
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Figure 2. Streamlines visualisation corresponding to different angles (Left) of
anastomoses and heights of the native artery (Right) to be elevated for the
anastomoses.
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Figure 3. Differences in time-averaged wall shear stress (TAWSS) and time-averaged
average vorticity (TAV) between models with different anatomosis angle.

To assess the hemodynamic effects of the AVF angle and the height of the native arteries
to be elevated to the side of the bypass vein, streamlines, time-averaged wall shear stress
(TAWSS) and vorticity (TAV) were calculated. Figures 2 depict the streamlines and flow
pattern changes relative to variations in anastomosis angle, curvature, and height. The
results suggest that the flow disturbance tends to decrease as the anastomosis height
and curvature increase, as well as when the anastomosis angle becomes obtuse. Figure
3 presents such differences and trends in TAWSS and TAW between anastomosis with
acute and obtuse angles.

3. Achievements

We have identified the optimal structure of the AVF supporter for individual ESRD
patients in need of haemodialysis by CFD-based shunt structural optimisation,
considering the real flow-distribution ratio at the arteriovenous bifurcation.

4. Summaries and future plans

The project has successfully delineated haemodynamic variations resulting from
alterations in the angle of AVF. This discovery marks a crucial milestone in our journey
towards comprehending the influence of various morphological characteristics on AVF
development. Through continued exploration and analysis of these features, we have
attained a deeper understanding of the intricate interplay between morphology and AVF
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evolution.

It's widely acknowledged that AVF models with diverse morphological attributes exhibit
distinct flow dynamics. Our findings underscore the significant impact of AVF angle
adjustments on hemodynamic performance, hinting at the potential benefits of
employing obtuse angles for AVF development. Nonetheless, to achieve a more holistic
understanding of the intricate relationship between haemodynamics and morphological
features, further animal studies and pre-clinical trials into variables such as vessel
diameter, anastomosis angle, and curvature is imperative.

. Research results
1) Journal
No applicable

2) International and domestic conferences, meeting, oral presentation etc.
No applicable

3) Patent, award, press release etc.
No applicable

Reference
[1]B.Ene-Tordache et al Nephrology Dialysis Transplantation, 27.1(2012),358-368.
[2]C.V.Cunnane et al. Numerical Methods in Biomedical Engineering, 35.12(2019),e3259.
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1. Purpose of the project

Geothermal energy is a promising solution for clean domestic energy generation due to
its low carbon dioxide emissions and high utilization rate. Characterizing subsurface
fluid flow is crucial to effective geological resource development. Well tracer testing is an
important method for understanding underground fluid flow and the influences of
injected water. By introducing chemically inert solute tracers into the injection fluid, we
can track their migration and analyze flow characteristics to aid in the assessment of
well connectivity and reservoir behavior.

Previous research proposed estimating fracture network structures based on tracer
response data, assuming the surface areas of flow paths are known. However, it is
difficult to apply this method to real-world scenarios because it is impractical to
determinize the actual surface area of complex underground fractures. Suzuki et al.
(Geothermics, 2022) shows to estimate the surface area of a single flow path through
optimization of a heat transfer model. However, the actual subsurface consists of
multiple flow paths, making accurate simulation difficult.
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Figure 1: Schematic of tracer test.

In this study, we propose a method to analyze thermal and solute tracer responses to
more reliably estimate complex fracture structures. By integrating these techniques, we
aim to characterize fracture structures in geothermal systems. Additionally, Suzuki et
al. (Scientific Report, 2021) demonstrated the potential of persistent homology (PH)
analysis to describe flow path structures and to estimate flow properties. In this study,
PH will be employed to extract flow path information from tracer data, and the
estimation method will be validated using numerical simulation.
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2. Details of program implement
2.1 Relation between fracture and flow

In our study, we consider a fracture within a rock to be a parallel plate characterized by
an opening aperture b, width w, and length L as depicted in Figure 2(a). A constant
flow rate Q was injected into the fracture, based on the assumption of a constant
average velocity u as illustrated in Figure 2(b). we can estimate the flow-path aperture
b as

_o _or_or 0

wu wL A
where T is the residence time representing the duration that it takes for the fluid to

flow between the inlet and the outlet in subsurface, and A is the flow-path surface area.
To estimate the flow-path aperture b from Equation (1), it is necessary to obtain the
flow rate Q, residence time T, and surface area A of the flow path. Among these
parameters, the flow rate Q can be determined by measuring the flow rate at the
production well. As mentioned earlier, surface area A can be estimated using a thermal
tracer response. In addition, the residence time T can be obtained from the solute
tracer response. By utilizing these values, the flow-path aperture width could be
estimated.
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Figure 2: Flow in parallel plates (a) considering the two-dimensional Poiseuille flow
and (b) converting to the average flow velocity.

2.2 Estimation of Flow-path Surface Area Using Thermal Tracer Responses

The heat transfer model we use assumes water flows through a confined reservoir with
parallel plate geometry, bounded by impermeable rock. Advective flow transports water
within the reservoir, with heat exchange governed by the conductive properties of the
rock. Thermal conduction along the fluid velocity direction is neglected. By analyzing the
given variables and parameters, the model aims to describe the heat transfer processes
occurring within the flow channel and the interaction between the water and the
surrounding rock. Regarding the boundary and initial conditions, it is assumed that both
the flow-channel fluid and the surrounding rock have a constant initial temperature.
The basic model can be expanded to include the influence of multiple flow channels
connecting an injection well and a production well. In this assumption, interactions
between different flow channels are neglected, and the initial and boundary conditions
for each flow channel remain the same as In the basic model. This simplified approach
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allows for the independent analysis of each flow channel, facilitating the study of
thermal behavior in the interconnected system.

By obtaining thermal tracer response (i.e., temperature drawdown observations)
resulting from water injection, we can estimate the surface area of rock influencing the
injected water's heat transfer. In this study, we assess uncertainty by considering not
only the surface area but also the probability distributions of other model parameters.
To achieve this, we employ the randomized maximum likelihood (RML) method, which
is an approximate Bayesian sampling approach, to estimate the uncertainty of model
parameters.

In previous studies, the advection-diffusion equation has commonly been employed to
analyze solute tracer responses. Combining the result from heat tracer test, it allows
for the estimation of the aperture size for each individual flow path based on their
respective flow rates, mean residence times, and flow-path surface area.

We characterize flow path structures by persistent homology (PH). The method of PH
analysis is shown in Fig. 3. Fig. 3(a) shows a fracture model with two holes ("flow
paths"). Fig. 3(b) is a binarized voxel image of this fracture model. The filtration
process in PH analysis can extract the number of flow paths and the narrowest
aperture in each flow path from the image.

(b)

(C)

voxel change

qr::mu:m

original

hole appear = Birth hole disappear = Death

Figure 3: Schematic of filtration process for image. (a) Fracture model. (b) Cross-
sectional images. (c)Filtration process

2.3 Numerical simulation

The method for estimating the flow-path apertures from thermal and solute tracer test
data will be verified in numerical simulation. A fracture model used for the validation is
shown in Fig. 4.

To obtain thermal and solute tracer responses, numerical simulations is conducted
using OpenFOAM. To simulate conjugate heat transfer, a mesh of the region will be
created using GeoChemFoam, our open-source pore-scale transport solver.
Subsequently, a series of simulations will be performed with water at different
Reynolds numbers, and outlet temperature data will be collected. For the solute tracer
test data, a mesh will be generated using snappyHexMesh. The steady-state flow will
be obtained using the SIMPLE method. Finally, the advection-diffusion equation will
be employed, utilizing the scalarTransportFoam solver, to obtain the solute tracer
response.
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3. Achievements
Expected outcome 1 and 2 have been achieved.

Currently, we are able to obtain tracer responses in OpenFOAM. The tracer response is
shown in Fig. 5. There is no clear peak, but there is a tail on the long side. Heat transfer
simulations will be performed in the next step.

)

’
% vﬂf

Figure 4: Fracture network model simulating fractures in rocks.

10° T

1072+

104 L

10° L

Concentration

108 L

10-10

I |
1 10 100 1000
Time[s]

Figure 5 Tracer response simulated in OpenFOAM

4. Summaries and future plans

In the next step, we will estimate the flow-path apertures by analyzing the data from
thermal and solute tracer responses. We will then compare these estimated values to the
flow-path aperture obtained from the PH analysis. The expected results are as follows.

1. In a simple fracture model, conducting a thermal tracer test in numerical
simulations can provide valuable data to estimate the surface area of flow paths in
the fracture network. This data would be used to fit with the heat transfer equation
to optimize the flow-path surface area, which should closely align with the surface
area defined in the model. Then, by analyzing solute tracer response, we can estimate
the residence time and the flow rate, enabling a fair estimation of flow-path apertures.
2. In complex fractures networks, the flow-path aperture estimated based on heat
and solute tracer test should be aligning with the flow-path aperture obtained by the
PH analysis

5. Research results

1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
Not applicable
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3) Patent, award, press release etc.
(Patent) Not applicable

(Award) Not applicable

(Press release) Not applicable
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Purpose of the project

Computational study has been widely utilized to predict the biofluid behaviour on
various treatment such as intravascular stenting and designing the microfluidic
sensor devices. Current development of computational method and algorithm has
broadly improved the prediction of devices’ performance and accuracy, moreover with
the presence of virtual simulations, the analysis of fluid behavior from various design
of treatment and diagnostics devices can be accurately predicted, this includes the
implementation of virtual method of stent deployment and flow simulations under
many design variations, also design optimization.

This project aims to do fluid dynamics simulation both for stent deployment and
designing the microfluidic diagnostic device. The stenting simulation was developed
with contact conditions on the stent-vessel interface. The simulation platform is
developed in an opensource platform based on spring-mass analogy. For the
microfluidic chamber, the simulation was developed for predicting the performance
of the T-shape microfluidic chamber that is usually used for biosensor analysis
devices.

Details of program implement.

Stent deployment simulations have been developed as the representatives of balloon
expandable stent which implemented with several deployments’ steps. Firstly, the
simulation algorithm will be expanding the balloon on the stenosed vessel area, the
expanded vessel geometry then exported as geometry files that is used in the stent
deployment process. The extended vessel geometry is set as the wall boundary where
the stent will be expanded on those vessel segments. The result of this simulation is
shown in Figure 1. After the stent has been virtually deployed, the whole geometry
can be re-exported as the wall geometry and can be used for further CFD analysis. All
the deployment process has been conducted on an opensource program based on mass-
spring analogy.

The second project focuses on the development of computational model of T-junction
sub-millifluidic channel that usually used in the biosensor and diagnostic devices.
This “T” shape consists of two perpendicular side inlet canals which flow two different
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kinds of fluid: silicon oil and water. The simulation was performed in ANSYS 2022 R1
(remotely accessed to AFI supercomputer network, IFS, Tohoku University). From
this simulation more understanding on the droplet generation process on the T
junctions sub-milli fluidic sensor. Besides, this simulation is also beneficial for further
development of this chamber for any design improvement.

(a) e —

() —

Figure 2: The mechanism of the droplet process observed in the intersection of T shape junction.

3. Achievements
- The open source simulation program for the deployment of the stent inside a post
balloon-expanded blood vessel segment has been successfully developed.
- The computational model and simulation of T-junction sub-millifluidic channel
has been developed.
- The droplet generation process on the T-junction sub-millifluidic channel can be
clearly observed.

4. Summaries and future plans

The contact conditions of balloon expanded blood vessel segment in this project is still
limited to the straight plane contact between the balloon outer surface with the blood
vessel. In the realistic stent deployment, especially for the self-expandable stent, the
contact conditions is set directly between stent wires and blood vessel, therefore the
next project need to include this realistic contact conditions between stent wires and
blood vessel wall.

The submicrofluidic channel simulation need to be evaluated by the experiment to
compare the results of simulation with the real droplet generation process.

5. Research results
1) Journal
Not applicable
2) International and domestic conferences, meeting, oral presentation etc
(included international conference without peer review)
[1] N.K. Putra, F. Z. Sarwono, I. Anshori, M. Ohta, H. Anzai: Numerical Simulation of
Droplet Generation on the Sub-Millifluidic Channel, Proceedings of the Twenty-
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3)

third International Symposium on Advanced Fluid Information, Sendai, (2023),
CRF-25, pp. 81-83.

Patent, award, press release etc.

Not applicable
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(1]

(2]

7+ Outlet

Liquid
Just after applying heat load :

;‘@) 1 min after applying heat load :
3.5 min after applying heat load :

2 : EEMRREMBIZE IS L O CLHP St @kl BlZft

R BAZDZERIRR
AMFZETREEE LT- 71 s Z 4 7 CLHP 13 80 ~ 100 K O#WERERE T, |HT7 A b4
BNV TIRK 30 W % 2 m BUinsrlfECThH Y, I B~ F /R L—28 CLHP (22
WTTIE, QS CEMEEREEE 2 m, ek 24 W OBMREZ R LTz, WG [RIFRE O EL
A EREZ AT 5 CLHP OJA TAFZER] & bl L TR 3 ~ 4 (R IEEEOEERE N AIEETH D,
SBFHLHEOMKIRE AT A~CHHT 5 2 & T, BEEETORGIHEREZRE S ED
HZENHFECE S, £7-, CLHP W CA L 5 1~ 50 kg/s/m?2 FEIR DA Bt s ORI
EENETEN XE PN CHEEAE RAVD 22 o 1228, ABFZEIC L 0 96 T LRt E B ik
FUEERENO A ICER ) U7z, 1R, TERIERE R & rIR a2 25 < Ui
ZiA L, CLHP EFFHETHIET MR 2% 2 L C, fEk & il U CRkg e i it 7
NWERERT D Z ENTE, EOMNCA R ONEREN M Sii=—5C, YHIOMZE HAE
[ESSPSTAVASESn R Al

FEHESHDEE

ZIVE COMFFERE A L, FRIREEARFZEAT B C N L 7= —# O3B & CLHP &8
VERFETARE T VORI L - C, 7 VA MREE T2 % CLHP O RSB/ ERr: % 7
SN LIz, FEFEHIGHERE L-~ /L F o 3R L— 28 CLHP ZH$5E L, AKFESthicE
UWNTEROK 24 WEMEREEREE : 2 m)OFEEICERE) L7z, S T W THIARNARE LTz
I B AR 36T D EMEERMEZ I 57N 5 Z L 2 RV E LT, CLHP NEOEHE
BN AR E D LA, WMEIRELZ22ER S (80 K) TRl 4 FEii L 7= fk 5, AU IEERIT T
225% CLHP P OEEREN O FIEUKICRR S L=, $72, AHBIES A 7 — Ry 7 L=
CLHP E#FFHETHET MISEBRFER & BB rm T Z L0 E o7z, L0 IKR
B2 RENGA T OT — X BT L ABERET L, EMER OEBSIHEE DO BRGNS 14
DL L CHEIT o5 5T, AWFZeESE 4@ L C CLHP % F RGO TR E L
AEL7-EE25.
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High Sensitivity and Quantitative Visualization around High-speed Projectile

KE Fadmst, R THH
FHRHERF TR, BRI ErT
THIEEE, TETPRIGER

HEB

H FRTRAT 4 2 iR L kO (R JE P TR DIRN SR, IAE R E %Y =
V77— MM E, MZEFH B CIAKEBRTED. SR rIBMEEHAND, EEEATZE CIAIE
HENTOD, &ift/al, BERIZ A~ TEa B e RIS P L TR, —05, THaHE
(TEBATP LT DORRTHLD, WO A SR LR DB TS L TR, ST LbKE
FEDEERDGFHNDLITIROZR . AAREAEL, THEHEER_ LOOES>THS. ZROLD
(ARZ BRI AA LS E DT, THRROBRE AT 2 LS, SO IO AR DT
Wi — IR T e W B E LA R, IO AN B2 D LD, EHE
RUITHEM T HZENELTHY, IFEFEGmBEEGA~OE I ITFEIC N TH 7. £ 2
TAMERETIE, M H AT 2O WE ORISR NS, 8 BE O AR T4
FHEEF SR, B CIARARL T HRE 2 I8, A TR e e A
BUKT Dk TSR HIE AN LS L ZEN BN THS.

HERREOHNE

IENZHYE L7238 IR AR 455 (Parallel Phase Shift Interferometry, PPSI) %
VIR, B THRERIEE - L SR TS AL & 5 BT, B (B4E 20 mm,
TSR, ER17.75+0.61g, B 3.8g/m3) THDH. EREANL, VRITKMS, HhE
TATEFREEONHENICB O TEIEZER (K 2 MPa, %) CIEL, BIdHE»S / 2
VAT Mach #1 1.3 TR E L5, PPSLIE, A 2FEEL—Y (R 532nm, HK2W)
L, REEFHETPO (VAT ANy« TURL, 7T« hAYY « T RN, 12 FR
M) 12k, AR U2 WERERRD 2 oONHICHEESna ) A—Z LA L1 CEhL v
A, EAE 10mm. ) ([ZX VT E 725, JER TR CYaEHsE HM (1 : 1, EF 100
mm) CTAFEDO R &N, SIEE /2%, HIEHZ S LR, FHEsE M T,
&SN, TOREE 5. HM TR S-S0 L HIEER@E# I M TR Sh-#ik
b, ~A 7 afm@e T LA D EHR R T E AT S S @R A7 CAM (Photron
CRYSTAPI-1P) C 1/4 5 Z & ONAREN &% 7= 4 e D TG 2 e L, THRmigo
BEEE AT D, TSR ONFEZRE L, SR 2RO 04 % 1597,

IS U 7= TR A1 & 2 BRI E PR OFEAGARATAE T A X 2 1R T, [X] 2a~c 1, MR
b 50us T SN2 b DO TH Y, HFEEIL, 256 pix. X256 pix. TH 5. FHD_H450%, 55
N AR 0° ), TP, (RO D 4 FEEO TSRS DT LI AR 5Ah
Zoax Uiz, F£7z, T Mach 3 1.2 OERIEALE O OWGOEMERT GEREME) FERZ2 T
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WZEAACHEE LT D, ERIEAUEFHD Bow shock, (&< BlEEE); Separation shock, 35 & OERAR
D% Wake ZBIRRICHEZR T\ D, £z, AR TR G, ERZNARSAR O
I LT o.

A L wm 01 BS PO
U o ——— JF=——==== ———— % )
@LL Beam direction
op
™
PSS
i

==
[

K1 WFHABRER TS K HBEERL & SAF Y OrlR{LEHEIR (PPSI ML

HFRITEE).

;\._ Bow shock

.
BN %

Separatidn

(@) t=to (b) t=t+50us (c) t=t+100us
B 2 EFIGARERTHEH L DMNIERTER. L35 BUSLETSHE HEA 0 ), TH45 4 DOEY
DUEADOTSEN S EER SNTI-BEENT (Abel ZHERT). 24K : 4T Mach #1 1. 30 TOBKEEF Y OFih
50 CFD fEMTfER 2 1 ZEHER & L CEARQTHE.
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7T BIZDZERAKR

AR FRZEN T A B ICB SR - BYEL, @R L X 9 3 2 EEAE P CRAET S
TS DS FE 5347 % T EE T 2 o O DAFES AR OBUHI RSN LTz, ZAUC XY, AWFZEIisiT
LA EID R S VTZ. — 7, B OAVNARSAY, SO ERE 25728,
EFHRRG S & FEEERMGIEICIE, Abel ZHUZ K Wi CONFENAR G D BN DD, Kkl
A3y

FLHLSEBRDEFEE
ML & YR O, R = v 77— h0%ii s EORESERS 0 & B A
itz By & LT, WHPBINARZN TR 2B IE % - SUE L, HIERY TSRS CER
20 mmOERFERZ M1.2 THIEI L7, ZOREE, BLOESH%ROMEE LU &7
- EEEE B T D ERERE P O FEAVE ONFRZN TR RE (1/4 ) 2 Bd5 LT,
13 OV TP & TE BRI AT DO FAEEL 2 2R LT,
ERERE P OBET EERY, HIBEERRE, 3 X O RICIE X 7.
LAFEO LRI, RQUTEERE FCOHBERITCTH H7-0, BEREBI BE%OEES e L,
BEREIALDNE L AT B0T 2 TWHESARDS, B FETOZE M RO FIRZ B 7-
728, TG T E 2RV LT
IREBRSEE FCOERICEATL, MEROTIRRHAITCIIEISA ATRE 7 s Big 25 HAl L,
ARFHEOENMEZI ST 5.

DEADES
FifHEs EHROSERRE MHEFESD)
AR

EfRiE - BNFER - RS - OBERERE
[1]E.Wang, I. Nagayama, T. Mizukaki and K. Ohtani, Flow Visualization Around High-Speed Projectile
with Point-Diffraction Interferometry, Proceedings of the Twenty-third International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-51, pp.141-142.
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Purpose of the project

Sonic boom mitigation remains a key issue for a commercial supersonic aircraft.
Experience with Concorde has shown that sonic boom impact is significantly affected
by local atmospheric conditions, such as temperature, winds, and relative humidity.
Therefore, the impact changes every flight because of atmospheric conditions
changing from moment to moment. In the previous research project SEIRA (Sonic-
boom Evaluation In Realistic Atmospheres), we have developed a kriging model for
sonic-boom evaluation under different meteorological conditions. We have kicked-off
the SEIRA II project in 2023; the purpose of the project is to continuously develop
the kriging model, to evaluate a model performance of the kriging model, and to
integrate it into a chemistry—climate model.

Details of program implement

Sonic boom variation of north-Atlantic supersonic flight was examined for the
kriging model development. Concorde flights were simulated by using the chemistry—
climate model EMAC coupled with the air traffic simulation model AirTraf. The
ECHAMS5 resolution was set to T42L90MA, 1.e., with a spherical truncation of T42
(corresponding to a quadratic Gaussian grid of approximately 2.8° by 2.8° in latitude
and longitude) and 90 vertical hybrid pressure levels up to 0.01 hPa (middle of the
uppermost layer; approximately 80 km). Concorde departed from John F. Kennedy
airport (JFK) at 13:30:00 (UTC) and flew to London Heathrow airport (LHR;
eastbound flight) along the great circle at A/ = 2.0 at 15.3 km altitude. Sonic boom
under the flight track at sea level was calculated by using the sonic boom simulation
tool based on the KZK equation; the tool has been developed based on Xnoise. The
simulation period was set from March 2009 to February 2019.

We analyzed the variation in sonic boom waveforms obtained from the ten years
simulation. The waveforms clearly change according to the atmospheric profiles,
which results in differences in overpressure. The overpressure ranges from 87.1 to
111.0 Pa; the mean value is 101.0 Pa (o = 2.90 Pa). Our results agree with the
previous studies. Seasonal trends in overpressure were analyzed for the period (Fig.
1). The vertical axis shows a difference in pressure between a mean overpressure for
the ten years and that for each month. The results show that the overpressure
decreases in winter, whereas it increases in summer. This trend agrees with that
reported in previous studies. Iura et al. (2023) investigated a seasonal trend of sonic
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boom impact with respect to the low sonic boom aircraft designed in the NASA’s N+2
program, and showed similar trend for the low-boom waveforms with long rise-time.
Therefore, the resulting seasonal trend is quite stable.

AP - APmean [Pa]
réaé\"_n'.:cu.-..o

Year

Figure 1 : Variation in sonic boom overpressures obtained from ten years simulations.

3.

2)

3)

Achievements

The atmospheric and sonic boom simulations have been completed by using the
Integrated Supercomputation System of AFI Research Center, IFS, Tohoku
University. Relationships between sonic boom impact and atmospheric conditions
were analyzed by the Proper orthogonal decomposition, and predominant
meteorological variables were found for surrogate modelling. With those results, the
Kriging method is developed further. Iura et al. (2023) presented the results at Inter-
noise 2023; Yamashita et al. (2023) contributed to AFI-2023.

Summaries and future plans

The sonic boom variation for Concorde flights over the North Atlantic were
analyzed for the period March 2009-February 2019 by using the chemistry—climate
model EMAC coupled with the air traffic simulation model AirTraf. The atmospheric
profiles on the flight track were calculated from the EMAC model. The obtained
overpressure ranged from 87.1 to 111.0 Pa; the mean overpressure was 101.0 Pa (o=
2.90 Pa). A seasonal trend of overpressure variation was clearly observed: the
overpressure decreases in winter, whereas it increases in summer. This trend is
observed every year for the ten years, and thus the trend is quite stable. The results
will be reported in a scientific paper, and our kriging model are improved further.

Research results

Journal (included international conference with peer review and tutorial paper)

[1] R. Tura, T. Ukai, H. Yamashita, B. Kern, T. Misaka and S. Obayashi, “Acoustic
propagation analysis of sonic boom at atmospheric variation during 10-year flight,”
Inter-noise 20253, Japan, (2023).

International and domestic conferences, meeting, oral presentation etc.

(included international conference without peer review)

[2] H. Yamashita, B. Kern, R. Tura, T. Ukai, T. Misaka and S. Obayashi, “Sonic Boom
Variation in Realistic Atmospheres,” Proceedings of the 23rd International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-64, pp.178-179.

Patent, award, press release etc.

Not applicable.
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Molecular Dynamics Study of Mechanical Balance
at Three-Phase Interface of Nano—Bubble on Solid Surface

BT BB, EREE (R JENE SRR, OKE TR
FBRERRSE TR, IUMNRFE TR, AR AR AR AT ErT
THEE, TIPSR

1. #EEs

AHFZED B, FERAE T/ ST V& TS 248t 255 2 L Th D, [FEikEE L
DF ) T JATITRAIRO BEERIEN R,  EAEE OEEGIE, WIOPIIES & LT T2 EE
THY, TOFERHOLNI SN TLURE, FBR, I alb—ay, FRmICOWTOMEMTD
NCW5. BEEREL, BEHORDEW T/ T NN DR EMI RIE T OWT, —FR
BRI DA 13T AE B UIT 21T 70 o 12, BRI ST VO, ZHSRCo Ty
FHYNT L RIXY 7 ORI K0 AR O RS LA BRI BN, oY D
ADBEREHE DT/ ST D K5 a7 =R TN LT 20T E 20123 &
T SIUTWV . BRI DT ) ST VORRZEA 72 81, ARSI DI 72 )N
TUANEET D ETHIR I &END EEZBNDT-0, BEHORIR E T/ 37 L0 ZFFR
BT DIHAI 7 AR A G N T Z A HEEE LT,

2. HIREREOAR

MRS, 0785 (MD) {EEHWT, WA H HEEm LT 7 ~7 00 =FRHRC T
B IV T 2 ADEAUIZ O T OfNT 2 NI T o 7. BRI otk L= 9 2°C, BE
HOENEITTMEL U, T AT DOFN53RE 25% & 3.0%ICF%E LT, BERDOMAD K E S,
MARS % 4, 8, 12, MAEE 20, 25, 30 DFF 9 DO XF— b L7z (K1), BELET/
INTIUFMHIAIZIE D D LU E S/ b ORIz, FTHAITINE B2 Tz
DOWTC, BESALVEH LT T BT ol Lo 7 oL 0 B U &
g L7=, Yo 7 OXTHW-SMROREEI T, FHEME M INESI B L, £50]VElk
WDEST >3V Bukker DXLV 7777 20X L VEH LZ. ZOFEE, MAZINE
SN 2 RTE, MAOKIHRENARE < 225 2 L TRMNTORHfE LYo 7oL W EHL
Tl & DFENKE L 2D Z eV oTz (K2). ZOfEFIE, MAMmREORE Sk #
MR ] EFELLD 1D T ) ST VN GANAER T A Z L AR L CRY, ZoNbLBEETHE=
FIRHFRD N FH ST o A3 7 ORI —ETH B2 61D, KIZ, MAINE DT /UTD
WTC, Bukker D&Y 7-7 77 20X KW R UI-RmE N Z g Uiz, ZOREE, MR
INE BT T TN ADO AT E T AR E = 7 &N 2 S I L W EERICFETDH 2 &
Dotz ZOFERLY, MARINE DT 2 3T, WimfEs K& < 72 2 & CRER-SIARR-
DOFRERSISTENT ) NI NVEEET D= T IIMEHT 22 LN E 26N, 26 OFER
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1: MDY =2 lb—3 3 7LD 2 F ) NI URMAITINE 57 WIEA T
HICARCORMEAER. WITMANE, DL | J 2B ESAAN DR Lz R ozl
MRS Zvd. MAARIZ L - T3T L | (Density) & ¥ > 7 DXy B HH L 7= Bl A4
TERD AT 5. (Young’s) D Faisshs 5.

£V, MAOEHEFENRKEL 78D 2 &THI AT NVEEET D NPREITKREL LD, —EDM
HWIAREIZ 72 % & T ST NAD ZFAFSRBMB O =0 7 S, T 8TV MIZTIL
£ ENDhoT F, B2 T HIFMABTEEARE K RDIEERERDHEEZLLND.

3. HIEREZEDEINR

WEAEREORER &0, [EARER OMARERE 2 2L SE D 2 & TSRO TZR ST o ADE
fbL, MBRHDEESE T/ ST IVOTCRDENS D Z L3tz ZOFRI, BRI
T ST NVOHEEER 2155 L\ D ABZED A ER T 5 ETHEETH Y, BRIOR¥D &
FRLTZEEZTND.

4 FLOHESHRDRE

WEAEREDBIIERER L 0, [ERBER OMAEEE 2 2L SE D 2 & T AT AOIRP T
D Z Enoynote. SEIFMBOTARRAEINZ & 0 —ARFHROT)HHI N T o 2R3 LD K HITZEAE
TODEMN, E=U T HOERIET, T/ T AOZFFHRUI T DRI FET /M
BT DT/ T N2l D720 OFE# 2755

5. MIERER
1) s EHEOTEERE BaFEzEs)
L

2) ER%E - BRFR - iR - OERERF

[1] W/ G, Hlh—, 52 AEIEE : Mo & 2 Bk Lo "7 V0578
SEHOfENT, BT Far T 7 L2 A 2023, M, (2023), 0S-14DI122.

[2] Y. Jonosono, S. Tsuda, T. Tokumasu, and H. Nagashima: Molecular Dynamics Study on Mechanical
Balance at Three-Phase Contact Line of Interfacial Nanobubble, Tiventieth International Conference on
Flow Dynamics, Sendai, (2023), 0S21-39.

[3] Y. Jonosono, S. Tsuda, T. Tokumasu, and H. Nagashima: Molecular Dynamics Study of Interfacial
Nanobubble on Convexo-Concave Surface, The 9th Asian Symposium on Computational Heat Transfer
and Fluid Flow, Jeddah, Saudi Arabia, (2023), ASCHT2023-072.
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Development of Phonon Propagation in Quantum Nano-structures by using High-sensitivity
Detection of the Surface Displacement

L B, SR AR, S R, RIS, R A, B HTRE, S s
EHTRE, P RACKAREIIZERT, o AmIsEERT:
G, HPTPRISEE

1. HAZEM

A~ — MMEEOEBIZIZT /) Ay — OB EREEZ IS L REAT
AADOHBNMETHD. ZhiL, BT/ BENRT N N, FrlicErk
TCAREE ECHEEM OB FREERN T NA AOMRELZREMNICH LSS50
BEMERDH DD THD. LLRNG, T8 ADOFRE - BN & MERell & Pl
T LD, BAETDH T+ 2 (B OERE L OEEREEZARICT I TH D
T T, MBI EIFIICB W TS AT T — bE e —ba o F
> 7 (LLF, NBE) EICX 0 HAIESF 2 ©F— (LLF, NPs) Z/ERIL, &Ik K
FTHHICEB SN V= —~T a XA UEENL (LLF, LH-PD) 15 % @ H 3
L. ZHIZEST N O7 4 /) UYMEEBMIZL, T35 2AORBEAOFRER LI
HETHIHREZEGEDI AN LET 5.

2. HIREEDOAE

NBE {251 725 um @ SOI b Ei2 90 nm D Si-NP Z/ERLL, Z D NP [E% SiGe TH
HL7= Si-NP/SiGe #HANREZ R LTZ. A AT 7L — s THDH 7 = ) F o OEfil s
252 ETNPRFEEZILSE D Z LN TE, SRR LEUEHEINP [IFEAS 13, 27, 47 nm
(LIF, NP13, NP27, NP47) D =FEfH Cdh-7-.

FTHIBA¥E U7z LH-PD 75 C LBl O R m AN EORFEIZ b4 IE L, COMSOL Multiphysics
V7 T L AR R R S R L. FORER, RN EORRIZ IR
&2, RSN Xy V7 (BEFBIOEL) OIEE, ¥+ U7 OIFFEFFESIZ L - TH
B UTEB\DIER S W o T BRFRRRE AKX S BIE LTS T &b o T, WEFREIIEURER
HZ Al 2755 L, & IR R U CORBVR A BEET 2 2 & TR OAEH LT-
M 2 550 L7z, SRR Al 22058 T ICRRIRmIC BRI C 2 IR LT v U 72
RS2 ZOIREET, K 1R X D ICEMINCES 2 EIA] L7 DR EALE OFR HA
NEZIE L7z, X212 3 SOREIOEIAIEE 0 & 5V BEOFER 2773, MEARREE TN L 7= 24
RO BOBAIIIENEITE TR UIE 27203, SRIOERTIX NP Bk X > TR &N
L, NP27 OB R b/ N E < Teo o, Blamatads L OME A IRORS I E 2 58 U 7= fhT )
B, NP & SiGe DFFICEIT HF v U 7 HiE A mmE ALK ORRIZ 1T 5% v U 7K
DT=DIZ, NP2T DRFZX v UV THMB RO EL 72D 2 LV ghotz. ZORERE, AT
BotaMietE S, REENEN NS ol AT -
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3. HIRBEEZEDERKR

NP IREOZEAIE, SERR S NT= % v U 7 OYEEL & IEROEFRRE & T4 L2 BERR O 12
RE L HBL FIETZ L30T, WEEREIL Al 27555 L CREVRZ [EE L CEWER DA
EER LT 2170, NP BiRZ2 /NS < THUSEA RO BYRE R A2 WD TE 52 L 2R L
7o AR XEEERER I A B LT v U TIRBICER LiZ. 7251, JEEEh
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International Conference on Flow Dynamics, {li5, BAS (2023).
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Evaluation of Heat and Mass Transfer Near the Gas—Iliquid Interface
during the Phase Change of Volatile Organic Compounds

Yuki Kanda*t, Yingxue Hu**¥+
*Institute of Fluid Science, Tohoku University
**School of Human Settlements and Civil Engineering, Xi’an Jiaotong University
tApplicant, 7TNon-IFS responsible member

Purpose of the project

In this study, the heat and mass transfer near the gas-liquid interface during
the phase change of volatile organic compounds (VOC) is experimentally measured
using an optical measurement method and numerical calculations.

Details of program implement
2.1 Visualization of acetone vaporization in air

In this study, acetone was chosen as the volatile organic compound, and the heat
and mass transfer near the gas-liquid interface during the phase change were
experimentally measured using a phase-shifting interferometer, as shown in Fig. 1.
Here, the notation 0 s indicates the time just before the acetone injection. The
variation in the optical path length difference along the y-axis of the blue dotted line
in Fig. 1 is shown in Fig. 2. The optical path length difference near the interface,
which indicates the apparent concentration, reached a constant value after
approximately 2.0 s from injection. This result indicates that the concentration at the
gas-liquid interface reached the saturation concentration of acetone. This result is
consistent with of those previous works (V. Shevchenko et al., Chem. Eng. Sci. 233,
116433, (2021)), where the acetone concentration at the gas-liquid interface reached
saturation concentration at 2.0 s just after the injection, and the validity of this
visualization experiment was confirmed.

A similar diffusion tendency was confirmed in the case of pressurized CO2 under
0.55 MPa comparing with a visualization result of air. The apparent concentration
gradient of acetone near the interface was steeper. Therefore, it can be estimated that
the diffusion coefficient of acetone in COz is lower under high-pressure conditions.

2.2 Evaluation of temperature drop effect on acetone vaporization in air

In this study, the effect of the temperature drop on acetone diffusion in air was
discussed with the experimental results in Fig. 1 and the numerical simulation. In
this study, the effect of temperature drop on the diffusion coefficient and refractive
index was evaluated.

According to the calculation results, the maximum temperature drop near the
interface was approximately 7 K at 30 s; however, no significant changes were
observed in the concentration distribution. Meanwhile, a slight change in the optical
path length difference near the interface was observed. These results were similar to
those of a previous study (V. Shevchenko et al., Chem. Eng. Sci. 233, 116433, (2021)),
and it was confirmed that the temperature drop effect on the concentration
distribution and optical parameter changes, such as the refractive index, was weak in
acetone vaporization in air.
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Figure 2: Variations in optical path length difference during acetone vaporization in air.

3. Achievements
As expected our plan, we established an experimental evaluation method for the
heat and mass transport phenomena in VOC evaporation and conducted a numerical
evaluation. In addition, we provided knowledge that will serve as the basis for
technological developments to suppress VOC emissions. We also reported our
research results at some international conference as shown in “Research results”
section.

4. Summaries and future plans
In this study, the transient heat and mass transfer of acetone vaporization were
measured using the phase-shifting interferometer, and the temperature drop due to
phase change was discussed using numerical calculations.
As our next joint research plan, we plan to apply the numerical simulation of
VOC diffusion obtained in this study to diffusion phenomena in supercritical fluids.
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5. Research results Research
1) Journal (included international conference with peer review and tutorial paper)
[1] Y. Kanda, R. Mukai, Y. Hu, L. Chen and A. Komiya: Accurate measurement for
transient heat and mass transfer in the vicinity of gas-liquid interface during
acetone vaporization utilizing the phase-shifting interferometer, 7The 17th
International Heat Transfer Conference (IHTC17) IHTC Digital Library, (2023),
(DOI:10.1615/IHTC17.250-50).

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] R. Mukai, Y. Kanda, Y. Hu, L. Chen and A. Komiya: Measurement and Evaluation
of Diffusion coefficients of water and propylene glycol in CO2 under different
pressure using the DPDVA method, Proceedings of the 22nd European Conference
on Thermophysical Properties (ECTP2023), (2023).

[3] Y. Hu, Y. Kanda, R. Mukai, J. Su and A. Komiya: Pore-scale Simulation of Two phase
Displacement and Mass Transfer in Porous Media, Proceedings of the 20th
International Conference on Flow Dynamics (ICFD2023), (2023).

[4] R. Mukai, Y. Kanda, Y. Hu, L. Chen and A. Komiya: Evaluation of Organic Solvent
Diffusion in Pressurized CO2 Gas Utilizing Dynamic Pendant Drop Volume Analysis,
Proceedings of the 20th International Conference on Flow Dynamics (ICFD2023),
(2023).

3) Patent, award, press release etc.
(Award)
Best Presentation Award for Young Researcher, “Evaluation of Organic Solvent
Diffusion in Pressurized CO: Gas Utilizing Dynamic Pendant Drop Volume
Analysis”, R. Mukai, Y. Kanda, Y. Hu, L. Chen and A. Komiya, Dec. 6, The 20th
International Conference on Flow Dynamics (ICFD2023).
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on Free-Flight Objects, Proceedings of the Twenty-third International Symposium on
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1. Purpose of the project

Ammonia is anticipated not only as hydrogen energy carrier but also as carbon
free fuel. Thus, to reduce GHG emission, development of combustor operated using
carbon-free fuel, such as ammonia is important. Thus, fundamental combustion
combustion characteristics of ammonia has widely been studied. In practical
combustors, such as a gas turbine combustor, operates under high pressure
environment to achieve high-load combustion. Thus, it is important to clarify
combustion characteristics of ammonia at high pressure conditions.

In the collaborative research project, flame structure characteristics of
ammonia/methane flames stabilized in a stagnation flow were numerically
investigated up to elevated pressure.

2. Details of program implement
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Figure 1: Flame structure of ammonia/methane flames at (a) 0.1 MPa and (b) 0.5 MPa.
Here, ENu3 represents the ammonia concentration of the fuel.
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In this study, numerical simulations were performed using the FreeFlame and
Impingingdet flame models of Cantera 2.6.0. The distance between the burner outlet
to the stagnation plate was set to 20 mm, which is the same for our previous study
in [1]. The mixture of ammonia/methane was used as fuel, and concentration of
ammonia in the fuel was varied from 0 to 1.0. Numerical simulations were conducted
up to 0.5 MPa condition. Detail of the condition of numerical simulation can be found
in [3]. Figure 1 represents the species profiles for ammonia/methane flames in a
stagnation flow at 0.1 MPa and 0.5 MPa. The profiles of the mixtures were
numerically clarified.

3. Achievements
In this year, the flame structure of ammonia/methane flames at elevated
pressure were numerically clarified. Since the configuration is the same with our
previous experiments, the numerical results obtained in this study is relatively easy
to compare with experimental results.

4. Summaries and future plans
The experimental validation of the results obtained in this study is important.
As for the next step, flame structure of ammonia/methane flames stabilized in a
stagnation flow will be acquired using laser diagnostics, such as NO-PLIF.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] A. Hayakawa, M. Hayashi, M. Kovaleva, G.J. Gotama, E.C. Okafor, S. Colson, S.
Mashruk, A. Valera-Medina: Experimental and Numerical Study of Product Gas
and N20 Emission Characteristics of Ammonia/hydrogen/air Premixed Laminar
Flames stabilized in a Stagnation Flow, Proc. Combust. Inst., 39 (2023), pp. 1625~
1633, doi: 10.1016/j.proci.2022.08.124.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] M. Kovaleva, G.J. Gotama, A. Hayakawa, E.C. Okafor, S. Colson, A. Crayford, T.
Kudo, H. Kobayashi: The Impact of Soret Diffusion on the Product Gas
Characteristics of Premixed Laminar Ammonia/hydrogen/air Flames Stabilized in
a Stagnation Flow, Proceedings of the 14th Asia-Pacific Conference on Combustion,
Kaohsiung, Taiwan, (2023), 200 (4 pages).

[3] A. Hayakawa, M. Kovaleva, A. Crayford, A. Valera-Medina: Effects of Pressure on
Flame Structure of Ammonia/methane/air Premixed Flames Stabilized in a
Stagnation Flow, Proceedings of the 23rd International Symposium on Advanced
Fluid Information, Sendai, (2023), CRF-2, pp.19-22.

[4] M. Kovaleva, A. Hayakawa, E.C. Okafor, Y. Hirofumi, A. Ali, A. Valera-Medina, A.
Crayford: The Role of Cyanides and Isocyanides in Emissions Formation of
Laminar Premixed Ammonia/methane Flames, The 61st Symposium (Japanese)
on Combustion, Akita, (2023), D211 (4 pages).

3) Patent, award, press release etc.
Not applicable
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1. Purpose of the project

The purpose of this project is constructing a Solid Oxide Electrolyte Membrane
(SOEM) which shows high oxygen ion conductivity. To achieve the purpose, we focus on
nano-thin film membrane and nanocrystalline in the membrane. A multi-scale analysis
combining quantum chemical calculations, molecular dynamics simulations, kinetic
Monte Carlo simulations, and experimental data is performed to clarify the correlation
between oxygen ion conductivity, grain size, and Grain Boundary (GB) structure in
SOEM. Based on the clarified correlation in multi-scale, we suggest a new concept of
SOEM which has high ion conductivity.

2. Details of program implement

Recent years, nano-thin film membrane and nanocrystalline have been attracted
attention as approaches for enhancing the oxygen ion conductivity in SOEM. The effects
of GBs increase relatively by thinning the membrane and introducing the
nanocrystalline in the membrane. Since GBs and the conduction of oxygen ion are nano-
scale in these membrane, using experimental technique is a challenging task to
comprehend the phenomenon of oxygen ion conduction. Therefore, in this collaborative
research, we will clarify the correlation between the conductivity of oxygen ion and GBs
in the membranes by multi-scale analysis in which information of quantum chemical
calculation, Molecular Dynamics (MD) simulation, kinetic Monte Carlo (kMC)
simulation, and experimental data are combined.

In the experimental approach, the microscale and macroscale behaviors of multilayer
ceramic composites (MCCs) were studied. The primary concern experienced with MCCs
is curvature resulting from the differing thermal expansion coefficients (TECs) between
adjacent layers of the cell. MCCs will experience curvature in the direction of the
material with the higher TEC, and are especially susceptible to curvature with thin film
construction. Gaining the ability to confidently predict the curvature of MCCs, assists
with structure improvement and tuning for better performance. Stencils were used to
cut MCCs into various 2D geometries. For curvature measurements, disks were
produced using circular cutting dyes with a diameter of 13 mm. After sintering, the
samples were analyzed by comparing the minimum distance between the edges of the
disk to the diameter of the sheet and calculating the curvature.

In the molecular simulation approach, we construct a multi-scale molecular
simulation model based on the MD simulation and experimental data by using the kMC
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method. By using the kMC method, the conduction phenomenon of oxygen ion can be
analyzed in larger scale than that of the MD method and on the scale close to the
experimental analysis. In the kMC method, oxygen ion diffuses stochastically. The
probability of diffusion is P= Joexp (-Fa / ksT'), where <k is the diffusion frequency, Fa
is the activation energy for the diffusion. <o and Fa is computed by MD method and
quantum chemical calculation, respectively. Experimental data is also applied for
validation of constructed model. By using the constructed model, the correlation between
the conductivity of oxygen ion and GBs in the membrane will be analyzed from molecular
scale point of view. Especially, effect of structure and distribution of GBs in SOME on
the conductivity of oxygen ion will be investigated. Based on the obtained results, SOEM
will be manufactured experimentally.

3. Achievements

In the experimental approach, it was found that an experimental TEC can be used to
predict MCC curvature using Timoshenko’s analytical model for curvature. It is also
valid for various substrates and film thicknesses. Based on this work, we can predict the
MCC sheet shape and thin-film pattern necessary to obtain desirable complex ceramic
shapes, such as a tube or wave pattern formed from a ceramic sheet. In molecular
simulation approach, we constructed an original kMC simulation code that incorporates
MD analysis data for Multi-scale analysis.

4. Summaries and future plans

In the experimental approach, dual-phase electrolyte membranes will be generated
by the lamination process, which is very common and effective for industrial scale
applications. Dual-phase electrolyte membranes consisting of (Y203)0.02(Zro2)o.90s (YSZ)
and Smo.2Ce0.802-5 (SDC) are laminated onto solid oxide fuel cell substrates. These layers
are generated by forming ceramic slurries with ceramic powders, then deposited via the
tape casting method. Once dried for at least 24 hours, the YSZ is laminated with a
hydraulic press onto an anode substrate. The SDC layer is then laminated onto the YSZ
layer and the composite is then sintered. After cooling from sintering, the cells are
fractured and imaged using a scanning electron microscope to reveal cross-sectional
structure as well as surface morphology. Conductivity of the SOEM will be determined
using the four-terminal DC technique, and the oxygen permeation flux will also be
analyzed. Dual-phase electrolyte membranes also present a more complex curvature
problem which can be studied in future work. In molecular simulation approach, the
effect of GBs on oxygen ion conduction properties and its correlation will be analyzed
using the constructed kMC code created. Furthermore, the validity of the simulation
results will be checked by comparison with those of experiments.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] T. Tjichi, H. Nagashima, A. R. Hartwell, J. Ahn and T. Tokumasu: Oxygen Ion
Conduction Property of Solid Oxide Membrane Based on Multi-scale Analysis, £CS
Transactions, 111 (6) (2023), 1597-1602.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] T. Tjichi, H. Nagashima, A. R. Hartwell, J. Ahn and T. Tokumasu: Oxygen Ion
Conduction Property of Solid Oxide Membrane Based on Multi-scale Analysis, 18th
International Symposium on Solid Oxide Fuel Cells (SOFC-XVIII), May 28-June 2,
Boston, MA, (2023).
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[3] T. Tjichi, H. Nagashima, A. R. Hartwell, J. Ahn and T. Tokumasu: Experimental and
Computational Analysis of Solid Oxide Fuel Cell Multilayer Ceramic Composites,
Proceedings of the Twenty-third International Symposium on Advanced Fluid
Information, Sendai, (2023), CRF-16, pp.57-59.

3) Patent, award, press release etc.
Not applicable
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1. Purpose of the project

Cerebral Artery Aneurysm (Intracranial Aneurysms IA) is a weak or thin spot on an
artery in the brain that balloons or bulges out and fills with blood. The bulging aneurysm
can put pressure on the nerves or brain tissue. It may also rupture, spilling blood into
the surrounding tissue. A ruptured aneurysm can cause serious health problems such as
hemorrhagic stroke, brain damage, coma, and even death.

The aim of this project is to establish a comprehensive computational model of aneurysm
Initiation integrating aspects of hemodynamics, biomechanics, mechanobiology, and the
peri-aneurysmal environment. Pre-existing experimental model will be utilized for
validation process. The objective is to correlate model-predicted variables with
experimental observations, facilitating a deeper understanding of the pathobiology-
hemodynamics interaction and elucidating the mechanisms underlying aneurysm
development and rupture.

2. Details of program implement

A cerebral aneurysm is a vascular condition characterized by local ballooning of an artery
in the brain. Cerebral aneurysms are classified as Saccular, and Fusiform aneurysms.
Although aneurysm formation and growth are thought to be the result of destruction of
the blood vessel wall, the details of the etiology are unclear. Aneurysm formation begins
with extrusion of the locally weakened wall of an artery. Some aneurysms stay the same
size while others grow continuously.

It is thought that cerebral aneurysms are caused mainly by acquired factors, with some
contribution by congenital factors, such as genetic diseases, that increase vascular wall
vulnerability. Vascular endothelial cells respond to enhancement of WSS associated
hemodynamics by triggering inflammation, which contributes to cerebral aneurysm
formation. in addition to WSS, mechanical stretching may be the trigger for cerebral
aneurysm formation.

Despite the agreement on the mechanism of aneurysm initiation, there is significant
controversy regarding the mechanisms responsible for the growth and ultimate rupture
of a cerebral aneurysm, with two main schools of thought: high-flow effects and low-flow
effects. In each theory, the hemodynamic environment within the aneurysm interacts
with the cellular elements of the aneurysmal wall to cause a weakening of the wall. From
histological observations, investigators concluded that the mechanical properties of the
aneurysmal wall are mainly related to collagen.

In addition to the attempts of unfolding the physics of cerebral aneurysm hemodynamics,
Computational fluid dynamics CFD has been a very useful tool in the design,
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development, and evaluation of endovascular management methods.

The role of blood-flow physiological parameters regulating aneurysm morphology and
natural history is poorly understood. It is necessary to model intra-aneurysmal
hemodynamics using realistic aneurysm geometries because aneurysm geometry is one
of the most important factors determining aneurysm flow patterns and WSS
distributions that influence aneurysm progression. Most models tend to oversimplify the
complex flow patterns observed in aneurysms in vivo. The difficulty of developing
reliable in vitro and animal models has hampered an accurate evaluation of those
physiologic parameters. Furthermore, better understanding of the mechanisms of
aneurysmal growth requires the study of the interaction among hemodynamics, wall
mechanobiology, wall biomechanics, and contacts with the peri-aneurysmal environment
structures. This will help improve patient evaluation and treatment.

Anatomic data of Intracranial Aneurysms (IA) were obtained from the micro-CT scan.
Computed Tomography (CT) technique makes it possible to visualize the inside of the
human body in a non-invasive way. It gives more capability for a more accurate diagnosis.
Hence, a three-dimensional reconstructed patient-specific geometry with realistic
boundary conditions is obtained to achieve the three-dimensional geometry (Figure 1).
Moreover, the constructed geometries are used to perform a computational simulation
for the blood flow through the cerebral aneurysm using CFD.

In this study, a three-dimensional reconstructed IA geometry with experimentally
obtained boundary conditions is considered. Hence, a three-dimensional comprehensive
model including the Newtonian flow viscosity model under pulsatile flow conditions is
developed. The arterial wall elasticity through two-way Fluid-Structure Interaction
(FSD is considered for the developed model to calculate the hemodynamics. Moreover,
blood dynamic factors will be used to investigate the flow characteristics with elastic
arterial wall and temporal flow responses. The two-way FSI procedure was performed
by applying an Arbitrary Lagrangian-Eulerian (ALE) formulation to calculate the
arterial response.

=
Figure 1: Phantom model development.

3. Achievements

The relationship between hemodynamics and cerebral artery aneurysm mechanics has
yielded key insights in this investigation.

In this study, the validation process between experimental and numerical models
demonstrated a good agreement, particularly regarding the relationship between
hemodynamics and cerebral artery aneurysm mechanics. A systematic comparison was
performed, evaluating simulated hemodynamic parameters like flow patterns in vitro
data as shown in Figure 2Figure 3. This rigorous validation confirmed the accuracy of
the numerical predictions and identified significant correlations between simulated
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variables and observed aneurysm behavior.

Velosity

0300
0263
0225

0188

0.150
013
0075
0038
0000

Imsh1)

a./T=0 b. #/T=0.12

¢. /T=0.31 d. #T=0.50

ct/T=031 d.t/T=05

(a) (b)

Figure 2: Comparative velocity Contours in the (a) numerical and (b) Experimental
elastic models at XY plane along the flow wave.
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Figure 3: Comparative velocity Contours in the (a) numerical and (b) Experimental
elastic models at YZ plane along the flow wave.

Furthermore, Computational simulations revealed nuanced yet impactful variations in
aneurysm hemodynamics, shedding light on previously unexplored aspects of flow
behavior. Notably, the model accurately captured the presence of vortices and
recirculation zones within the aneurysms, demonstrating high fidelity. Interestingly, the
flow dynamics exhibited a measurable sensitivity to the Young's modulus of the
aneurysm wall. These findings suggest a coupling between hemodynamic forces and the
mechanical properties of the aneurysm wall, influencing key parameters like wall shear
stress (WSS), time-averaged WSS, pressure distribution, and formation of stagnation
regions and kinetic energy cascades as shown in Figure 4 - 9. This comprehensive
analysis highlights the multifaceted nature of hemodynamics within cerebral artery
aneurysms and underscores the intricate interplay between aneurysm mechanics and
flow dynamics. These insights contribute to a deeper understanding of the
pathophysiology of these aneurysms, potentially leading to the development of more
targeted therapeutic interventions and improved patient outcomes.
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4. Summaries and future plans

These findings provide a foundation for developing robust predictive models that
integrate theoretical principles with empirical evidence. Such models have the potential
to significantly impact clinical decision-making by facilitating personalized diagnoses
and tailored treatment strategies.

The current findings boost toward further exploration, refining the model and expanding
its reach to address critical challenges and detect deeper understanding.

A pivotal aspect of our future work involves systematically varying boundary conditions
to understand their impact on the computational outcomes. By exploring a range of
conditions, we aim to identify the set of conditions that most accurately reflect the
experimental data. This iterative process will involve adjusting inlet and outlet
conditions to find the configuration that best aligns with observed hemodynamic
patterns.

A comprehensive exploration of Young's modulus sensitivity is on the horizon. We will
systematically vary this parameter, observing its impact on different hemodynamic
variables. This in-depth analysis aims to provide an understanding of how mechanical
properties influence aneurysm growth and rupture, offering invaluable data for clinical
applications.

5. Research results
Not applicable.
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Purpose of the project

Through development of new signal processing way based on Gaussian denoising method and
Hough transformation method, the quite weak pulsed eddy current testing signal can be well
featured. The aim of this research is to enhance the detectability of wall thinning of ferromagnetic
material pipe with thick insulator.

Details of program implement

For various defects emerging in ferromagnetic metal structures, corrosion under insulation (CUI),
as shown in Figure 1, is widely acknowledged as a significant challenge for current
Non-destructive Testing (NDT) technologies. Whereas, not all NDT techniques are powerful to
detect CUI. Fortunately, pulsed eddy current testing (PECT) has been proven useful in local wall
thinning quantification of the ferromagnetic pipe with insulation. In the past few years, there have
been a lot of studies focused on its modeling theory, signal denoising method and feature
extraction [1-5]. However, the filter effect and adaptability of feature extraction leave a lot to be
improved.

General
Corrosion
Pipe
Insulation Protective
layer

Figure 1 : Corrosion under insulation.

In this study, to improve signal-to-noise ratio and adaptively extract signal feature and finally
obtain better quantification accuracy of the ferromagnetic material thinning, a novel signal
denoising method with significant filtering effect using Gauss filter and Independent Component
Analysis (ICA) and a new PECT signal feature extraction method based on Hough transform (HT)
are proposed.

The proposed signal processing method includes Gauss-ICA filter and HT feature extraction
method. It comprises the following steps: Firstly, an ICA model can be built using the PECT
signal obtained from the experiment and the power frequency interference signal, and then the
interference-free signal can be obtained by solving this model with Fast-ICA algorithm. Secondly,
a Gaussian filter is used to remove random noise from the interference-free signal to obtain a
clean signal. Finally, HT is utilized to recognize the later linear stage of PECT signal, and the
arctangent value (6) of the slope of the recognized line is used as the signal feature.
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The main types of the noises embedded in pulsed eddy current signal are power-line interference
and Gaussian noise with normal distribution. ICA is firstly introduced to suppress the power-line
noises, the power-line interference is shown in Figure 2. The ICA model is x = As, where s is
independent component (IC) and A is the mixture matrix. And the process of ICA is shown in
Figure 3. In order to obtain u(f), the correlation coefficient between each component of the IC
matrix and the original PEC signal can be calculated as

RUX.Y) = Cov(X,Y)

JVar[ X Var|Y] M

The result of calculation is shown in Figure 4. Thus /C3 is the PEC signal free of power-line
noise u1(%).
10
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Figure 4 : The calculation of the correlation coefficient between each component of the IC matrix
and the original PEC signal.
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After eliminating the power-line noises, numerous random noises still exist in the PEC signal
with a normal distribution. The random noises are shown in Figure 5. This means that the random
noise belongs to Gaussian noise, thus the Gauss filter should be useful to denoise the PEC signal.
The Gauss filter is a non-uniform low pass filter, which can be achieved through the convolution
with gauss kernal. The expression of Gaussian filtering to () can be described as

u(®)=u,(®g @
Where, ® represents convolution; g is a Gauss template function with a mean of zero. After

Gaussian filtering of ui(f), the pure PEC signal u(f) is obtained without the power-line
interference and Gauss noise.
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Figure 5 : The Gaussian random noise.

Next, HT is used to adaptively capture the later-stage line part of the smooth PEC signal. The
principle of abstracting the line part through HT is shown in Figure 6. For different thicknesses of
plates, the later-stage gradient is similarly different. As shown in Figure 7, the starting time of
linear varies with the thickness, thus HT is employed to recognize the linear part. The decay rate
of the later linear part of PECT signal under single-logarithm coordinate system is regarded as
the characteristic value to detect the thinning defects of ferromagnetic material. The characteristic
value is related to the thickness of the specimen, so it is called the thickness angle.
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Figure 6 : Principle of HT.
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3. Achievements

1) A PEC-based quantitative method for evaluating the thickness of ferromagnetic materials is
proposed. The method is assisted by ICA-Gauss filter and Hough transform (HT).

2) ICA-Gauss filter is used to suppress the power-line noises and random noises in raw PEC signals.
After filtering, the signals becomes significantly smooth.

3) HT is used to adaptively capture the later-stage gradient to obtain the arctangent value 8, which
is called as the thickness angle to measure the thickness of ferromagnetic materials.

4. Summaries and future plans

1) Summaries

A PEC-based quantitative method for evaluating the thickness of ferromagnetic materials is
proposed. The method is consisted of ICA-Gauss filter and Hough transform (HT). ICA-Gauss filter
is used to denoise the PEC signals and HT is employed to recognize the linear part of the signals.

2) Future plans

(DFabrication of testpieces of differient wall thinning of ferromagtic material plate and pipe;
@Optimization for the developed ICA-Gauss filter by discussing the power-line harmonics to be
removed and the downsampling factor.

(®Discussion on the feasibility and superority of the developed new signal processing way for better
quantification accuracy of ferromagnetic material thinning with thick insulator.

5. Research results
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[5] S. Xie, S. Yang, G. Lu, W. Guo, Z. Chen, T. Uchimoto and T. Takagi: Pulsed ECT signal

processing algorithm for better quantification of ferromagnetic material, Proceedings of the
Twenty-third International Symposium on Advanced Fluid Information, Sendai, (2023), CRF-22,
pp. 73-76.

3) Patent, award, press release etc.

(Patent)

“Evaluation of wall thinning with thick insulator based on pulsed eddy current testing method
using novel signal processing way”, Shejuan Xie, Guohang Lu, Jizhou Zhang, Zhenmao Chen
and Hong-En Chen, June 27, 2023, apply.
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Evaluation of the Dynamics of Natural Convection Thermal Boundary Layer under
High Grashof Number Condition

Atsuki Komiya*¥, Nicholas Williamson**+
Junhao Ke**, Steve Armfield**
*Institute of Fluid Science, Tohoku University
**School of Aerospace, Mechatronic Engineering, The University of Sydney
tApplicant, ¥TNon-IFS responsible member

Purpose of the project

In this study, we focus on the turbulent temporally evolving natural convection
boundary layer flow along a vertically heated isothermal wall using direct numerical
simulation (DNS). The development of the flow and the Grashof number dependence
of the first and second order turbulence statistics are examined. In this study we aim
to visualization experiment and 3-D numerical simulation of thermal flow fields in a
closed cavity under spatiotemporally variable thermal condition are performed near
the critical Rayleigh number. This aims to evaluate the natural convection flow for
heat transfer enhancement.

Details of program implement

A three-dimensional direct numerical simulation has been carried out by IFS super
computing system, with Pr= 0.71 using a massively parallelized solver. A uniform
mesh is used in the homogeneous directions (streamwise and spanwise); while the
wall-normal direction employs a logarithmically stretched mesh using Gamma
function, with a maximum stretching rate of 3.56%. Here the adequacy of the grid
resolution is assessed by the Kolmogorov scale nx and calculation of the 1D energy
spectra. With increasing Grashof number or equivalently Reynolds number, nz
decreases. By the end of simulation, the grid size in the homogeneous directions is 2.5
times large scale of & while the minimum wall-normal cell (i.e., first cell adjacent to
the wall) is about 50% of n« and the maximum wall-normal cell (.e., the first cell
adjacent to the far-field boundary) is about 6 times large scale of ni With this grid
size our tests have shown the energy spectra is well resolved in our code. Through the
numerical simulations, we revealed the development of turbulence structures and
statistics has two stages: at low Grashof number, the flow has a laminar-like near-
wall region with a turbulent outer bulk flow; and at higher Grashof number, the entire
flow is turbulent. Fig 1 shows the visualisation of the streamwise velocity contours at
y* = 15. In (a) and (c) the Grashof number is relatively low and the low-speed packets
occupy a large wall-parallel area of the instantaneous velocity field; whereas at higher
Grashof number in (b) and (d) the flow field appears much more streaky, with
streamwise elongated streaks that are commonly seen in the momentum-driven
turbulent boundary layers.
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Figure 1: Wall-parallel planes of the normalised instantaneous streamwise velocity in
the near-wall region at y* = 15 for (a) Grs = 10°, and (b) Grs = 2.7 x 107. (c,d)
Magnified view of the blue boxes in (a,b), respectively. The horizontal red line in (a) and
(c) depicts the most energetic length scale at Grg = 10°; the horizontal red line in (b)
and (d) depicts the most energetic length scale at Grs = 2.7 x 107.

3. Achievements
In 2023, this project has resulted in a joint publication in the Journal of Fluid
Mechanics. The resulting publication was also featured in Focus on Fluids for being
1 of the 12 most significant Journal of Fluid Mechanics (JFM) articles in 2023. This
project also resulted in two Int’l conference presentations in 2023 — one of which was
invited keynote.

4. Summaries and future plans

The present study investigates a temporally developing natural convection
boundary layer with Pr= 0.71 using direct numerical simulation. The DNS results
reveal that turbulence development of such a thermally driven convective flow has
two distinct stages: at relatively low Grashof number, the bulk flow is turbulent while
the near-wall region is laminar-like or weakly turbulent; at sufficiently high Grashof
number, the entire flow becomes turbulent in the sense of von Kdrman. In the weakly
turbulent regime, the near-wall turbulence is sustained predominantly by the
pressure transport in addition to the shear production. At higher Grashof number,
the flow becomes fully turbulent, and both turbulent transport and shear production
become stronger, while the pressure transport is decreased.

In future study, we will continue to explore the turbulence development in water
flows (Pr=7) and the transition mechanism towards the ultimate turbulence regime.
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5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] Ke Junhao, N. Williamson, S. W. Armfield, A. Komiya: The turbulence
development of a vertical natural convection boundary layer, Journal of Fluid
Mechanics, 964, A24. DOI: https://doi.org/10.1017/jfm.2023.382.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
[2] Ke Junhao: invited keynote, the 12h Australasian Natural Convection Workshop,
Melbourne Australia, 2023, pp41-42
[3] N. Williamson: From the classical regime to the ultimate regime of natural
convection: turbulence structure evolution and near-wall streaks. In American
Physics Society, Annual meeting of the Division of Fluid Dynamics, Washington
DC the United States, 2023.

3) Patent, award, press release etc.
(Patent) Not Applicable
(Award) Featured in Focus on Fluids, A. Wells, From classical to ultimate heat fluxes
for convection at a vertical wall, Journal of Fluid Mechanics, 970, F1. 08 Sept
2023. DOI: https://doi.org/10.1017/jfm.2023.665

(Press release) Not Applicable
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Generation of Charged Cavitation Bubbles and the Characteristics
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*Institute of Fluid Science, Tohoku University
**Fcole Polytechnique Federale de Lausanne (EPFL), Switzerland
***Graduate School of Engineering, Tohoku University
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*k%

1. Purpose of the project

Cavitation bubble dynamics is still a major issue for a variety of industrial
applications, including hydraulic machines, marine propellers and space rocket inducers
among others. We have clarified that hydrogen gas is included in a plasma generated
bubble and jetting dynamics from cavitation bubble through the previous IFS
collaboration research project. Although the jetting phenomenon strongly depends on the
gas pressure inside cavitation bubbles, the gas pressure has not been clarified because
the cavitation process is short and small. In this project, we aim at developing a pressure
measurement method using electrical discharge characteristics in the cavitation bubble.
We strongly believe that the complementary skills developed by the research groups led
by Prof. Farhat (EPFL) and Prof. Sato (Tohoku University) will greatly help achieving
the project goals.

2. Details of program implement
In 2023, we aim at generating a laser- Tube(d1=0.3 mm,d2=0.1 mm)

induced cavitation bubble in a water drop in © ) @ M
oil to generate plasma in the bubble, because ‘
the discharge in a laser-induced cavitation Bubbm)
bubble in oil was difficult. Fig. 1 shows a Wister Gl .
concept of the generation of laser-induced -

cavitation bubble in water droplet in oil and

discharge in the bubble. A 10 X 10 X 50 mm @ ™ Jy Voltag
glass cell was filled with silicone oil, and a =
tungsten needle electrode with a radius of 30 Laser o> Bubble
um was set in the silicone oil. The water P

droplet was supplied using the microtube

with an inner diameter of 100 um. A voltage
of up to 5 kV was applied to the electrode. The Fig. 1 The concept of generation of bubble in
voltage and current waveforms were water droplet in oil and discharge in the
measured with an oscilloscope. The cavitation  bubble.
bubble, induced by a laser pulse, was imaged
by a high-speed camera at 1 Mfps with a microscope lens. A 532 nm laser was used as
background light.

Fig. 2 shows a series of photographs of Fig. 1. In this experiment, the initial droplet
size was reduced to 0.5 mm in diameter. In addition, +5 kV was applied to the electrode
10 us after laser irradiation. The droplet reached its maximum diameter at 60 us after
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the pulsed laser irradiation, and then
converged to a minimum value at about
160 us. Thereafter, a slight rebound is
observed once, and finally the droplet
diameter is reduced to the initial
droplet diameter. Considering these
observed shadows as a bubble and a
water droplet, it can be inferred that as
the rebound bubble moves toward the
left of the electrode, the water droplet
also deforms and approaches the bubble
in the oil.

il

60us

3. Achievements

To generate a discharge in cavitation
bubbles in insulating oil, the laser was
focused on a water droplet to generate
water vapor cavitation bubbles. The
discharge was successfully generated
inside the bubble. This result shows
that we could achieve the first step to charge in a cavitation bubble in oil.

Fig. 2 Images of the bubble behavior generated in
the water droplet in oil with application of +5kV.
(Frame rate: 1 Mfps, Exposure time: 500 ns, Scale
bar: 500 um)

4. Summaries and future plans

Successful generation of the discharge in a cavitation bubble in oil opens the next
stage to increase the energy density of the cavitation bubble at collapse. The next plan
1s the generation of discharge in a cavitation bubble in oil by reduction of pressure.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] S. Liu, K. Nitto, O. Supponen, S. Kamata, T. Nakajima, M. Farhat, T. Sato: Plasma-
based identification of gases in a laser-induced cavitation bubble, Applied Physics
Letters, Vol. 123, Issue 9 (2023), Article No. 094102, doi: 10.1063/5.0164732.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
[2] K. Kurihara, S. Liu, T. Nakajima, K. Ohtani, M. Farhat, T. Sato: Production of Laser-
induced Bubbles in Water-oil System, Proceedings of the Twenty-third International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-46, pp. 130-131.

3) Patent, award, press release etc.
(Patent)
“Generation Device and Generation Method of the Electromagnetic Wave”, Takehiko
Sato, Siwel Liu, Tomoki Nakajima, March 21, 2024, apply.
(Award)
Not applicable
(Press release)
Not applicable
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Fig. 1 Schematic of experimental setup.
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Fig. 2 Image of the scattering emission from the ultrafine
droplets by the irradiation of nanosecond pulse laser.
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[2] T. Sato, H. Fujita, R. Kumagai, S. Kanazawa, K. Ohtani, A. Komiya, T. Nakajima, T.
Kaneko: Initiation and propagation mechanisms of underwater streamers, 76th Annual
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Analysis of Power Generation from Ammonia Based Fuel in Solid Oxide Fuel Cells

Cole Wilhelm*, Jeongmin Ahn*¥
Kenta Tamaoki**, Hisashi Nakamura**{¥
*Department of Mechanical and Aerospace Engineering, Syracuse University
**Institute of Fluid Science, Tohoku University
TApplicant, TFIFS responsible member

1. Purpose of the project

The purpose of the project is to generate electricity from a solid oxide fuel cell (SOFC)
using an ammonia-based fuel source. To achieve this purpose, we provided ammonia fuel
mixtures to the nickel side (anode) of the fuel cell. Thermal cracking of the ammonia at
high temperatures provided the hydrogen necessary to complete reactions. The objective
of the project is to evaluate the ability to directly source hydrogen from an ammonia
mixture at the fuel cell interface, while also generating electricity with no hazardous
emissions.

2. Details of program implement

In the simulation aspect, we constructed a model for the pre-reformed ammonia
supply to the SOFC. The beginning of this project sought to determine the effectiveness
of directly supplying pre-reformed ammonia synthesis gas (syngas) from a micro-flow
reactor (MFR) to the SOFC. A model was developed to estimate the syngas compositions
generated by the MFR. These estimations were also be validated experimentally through
testing in a MFR. The concentrations were then replicated in the experimental portion
of the project for the fuel supply to the SOFC.

Tube Furnace SOFC

Exhaust

Testing
Apparatus

Mass Flow Controller

ﬂ Mass FIowControIIer (NH

Mass Flow Controller

Figure 1: Experimental setup implemented for SOFC testing.
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In the experimental approach, the fuel was first applied to planar geometry SOFCs.
Cells in use include a nickel-yttria stabilized zirconia (60 wt% NiO 40 wt%
(Y203)0.08(Zr02)0.92 (Ni-YSZ)) anode, YSZ electrolyte layer, samarium doped ceria
(Smo.20Ce0.8001.95 (SDC)) electrolyte buffer layer, and lanthanum strontium cobalt ferrite-
SDC (70 wt% (Lao.60Sr0.40)0.95C00.20Fe0.8003-x 30 wt% SDC (LSCF-SDC)) cathode layer.
SOFCs were operated on mixture compositions which were estimated in the simulation
approach and the results were compared to the performance on pure hydrogen fuel. In
this way, hydrogen sets the baseline for the SOFCs performance level. Electricity
generation was analyzed using a four-terminal DC technique. In order to focus on the
direct reactions of ammonia and hydrogen on the SOFC, the model syngas supplied to
the cell only contained ammonia, hydrogen, and nitrogen, where nitrogen accounted for
any other gas species generated by the MFR. Figure 1 above depicts the testing setup of
the SOFC. The SOFC is housed in a tube furnace to regulate temperature and mounted
onto a quartz tube to create a seal between the anode and the cathode. Mass flow
controllers were used to regulate the gas supply to the cell. Syngas components were
combined for mixing in a manifold immediately after the mass flow controllers.

3. Achievements

The peak ammonia reformation using the MFR system was determined to occur at an
equivalence ratio of $=4 and a temperature of 1400°C. Tables 1 and 2 show the supply
to the MFR and the exhaust exiting the MFR, respectively. The exhaust composition from
the MFR makes up the components of the fuel supply to the SOFC, as shown in table 3,
with a total flow rate of 100 ml/min.

Table 1 : Supply to Micro-Flow Reactor

NH; (flow %)

Oz (flow %)

Ar (flow %)

52

10

38

Table 2 : Exhaust from Micro-Flow Reactor

NH3/NH. 3,initial

H> (flow %)

Table 3 : Supply to Micro-Flow Reactor

NH; (flow %)

H> (ow %)

Nz (ow %)

41.6

1

57.4

The SOFCs were tested with hydrogen first to obtain a good baseline, then tested
with the model ammonia syngas. Figure 2 depicts the polarization curves for the SOFC
operating on pure hydrogen. The open circuit voltage (OCV) is approximately 1V when
testing from 650°C to 750°C. The cell also shows a good maximum power density of
343mW/cm? at 750°C. The same SOFC was also used for gathering polarization curves
with model ammonia syngas, as depicted in figure 3. While operating on the model
syngas, the SOFC showed an anticipated decrease in OCV, power density, and stability.
The OCV was approximately 0.9V for all testing temperatures. Since there is only 1%
H2 in the supply flow, the majority of power generation is dependent on the rate of
thermal cracking of NH3. This means that any fluctuations in thermal cracking will be
accompanied by voltage and power fluctuations. With the model syngas, a maximum
power density of 128mW/cm?2 at 750°C was obtained. This is approximately 2.7 times less
than the cell operating on pure hydrogen. Given that the model exhaust supplied to the
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SOFC has a small concentration of Hz, and most of the flow is inert N2, the maximum
power is still very good. Additionally, the data from both flow conditions shows the
expected relationship between performance and temperature. As the temperature
increases from 650°C to 750°C, the OCV and power density experience small and large

increases, respectively.

1271 1350
’ | 850
-
1280 E
S081 WY g i B
o p g T l >
206 L 5.3 7
= // \ 1180 &
L ]
047 y =
/ \\ 1100 ©
\\\\ g
0.2r = 150 o
0 - : - : ; 0
0 200 400 o600 800 1000 1200

Current Density (mA/cmZ)
Figure 2: SOFC performance while supplying pure hydrogen at 100mL/min.
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Figure 3: SOFC performance while supplying model syngas at a total 100mL/min.

4. Summaries and future plans

The results discussed above confirm that the anode of the SOFC is successfully
completing reactions for the thermal cracking of ammonia. The model ammonia syngas
flow, which is very hydrogen deficient, is still able to generate power by directly sourcing
H+ from ammonia gas. The combined ammonia reformation MFR and SOFC system is a
viable option for power generation. However, work will be done to improve the pre-
reformation process, the SOFC performance, and the selection of fuel supply
compositions. Further work is necessary to evaluate the utilization of ammonia through
SOFC exhaust analysis, and to determine whether the ammonia degrades the SOFC
with prolonged operation. Additionally, future plans involve the use of both a simulation
and an experimental approach to determine the correlation between ammonia fuel
supplies, with and without additives, and the performance of SOFCs. Additives will
include, but are not limited to, small concentrations of hydrogen or water vapor. Based
on this correlation, we will establish the optimal ammonia fuel supply conditions for
SOFCs. Additionally, the experimental results will be used to update the simulation
model and improve its accuracy to the studied experimental cases.
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5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] C. A. Wilhelm, K. Tamaoki, H. Nakamura, J. Ahn: Solid Oxide Fuel Cell Performance
on Ammonia Gas Mixture from a Micro-Flow Reactor, Twenty-third International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-65.

[2] C. A. Wilhelm, J. Ahn: A Comparison of Solid Oxide Fuel Cell Performance on
Ammonia Versus Hydrogen, Proceedings of the Twentieth Int. Conference on
Flow Dynamics (2023).

[3] C. Wilhelm, K. Tamaoki, H. Nakamura, J. Ahn: Investigation of Ammonia as a Fuel
for Solid Oxide Fuel Cells, ASME POWER Conference Proceedings, (2023),
POWER2023-108936.

3) Patent, award, press release etc.
(Patent)

Not applicable
(Award)

Not applicable
(Press release)

Not applicable
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Combination of Atmospheric Pressure Plasma with Mist Generated by condensation of
Water Vapor in Pressurized Air

Yun-Chien Cheng*f, Jiun-Shian Lee**, Tomoki Nakajima**, Siwei Liu**, Takehiko Sato**{+
*Department of Mechanical Engineering, National Yang Ming Chiao Tung University
**Institute of Fluid Science, Tohoku University

tApplicant, TTIFS responsible member

1. Purpose of the project

The nano-scaled sized droplets, mist, have high cleaning efficiency and has large reaction surface.
The conventional method uses large amount of water to clean the surface. In contrast, using
high-speed mist can effectively clean surface with few amount of water [1]. The ions generated by
the mist also shows sterilization effects. However, the generation mechanism of the ions and charges
is still unclear. In this project, the self-made mist generator was developed and the effects of mixing
parameters, including the nozzle temperature, distance between nozzle to surface, humidity and
heating power, on the current was investigated. Then the charge generation in the mist can be
discussed and optimized. In this cooperation study, Prof. Sato’s lab and Prof. Cheng’s lab are
working together to investigate the efficacy of mixing the mist with atmospheric pressure plasma to
further enhance the cleaning efficiency and the RONS generation efficiency.
[1]1Y. Xiao et al., IIPEST, 16 (2022), e03003.

2. Details of program implement

Fig.1 shows the mist generator, and it is composed by a heater, a stainless-steel vessel, a gas
source, a pressure gauge, a temperature meter and a nozzle. The distilled water is added to generate
the mist. The principle of mist generation is that the distilled water is heated and boiled using a
heater (AS ONE Corporation, EHP-170N) and vaporized. High temperature and compressed gas in
the generator generated high pressure (~6 atm in absolute pressure). The pressurized water-vapor
comes out at the nozzle as a supersonic flow from a nozzle and the condensed water vapor is formed
as a high- speed mist. During the experiment, the temperature of the heater is maintained at 300 C.
The size of vessel is 135 mm in height, 70 mm in inner diameter. The main part of the vessel is a
cylindrical glass pipe, and the top and down cover plate are made of stainless steel, which is covered
by a stainless-steel layer for safe. It can bear maximum 6 atm (absolute pressure). The pressure in the
vessel is monitored by a pressure gauge and the water temperature by a thermometer (OMRON
E5CN-HQ2 and AS ONE Corporation KTO-16150M3). The is nozzle commercial type (Spraying
Systems Co., HB-1/8-VV- SS-15-01). The nozzle shape is a straight V-shape cutting a part of a
cylindrical throat of the nozzle. The nozzle and the tube are covered by a wire heater (Tokyo
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Figure 1. Sketch of the mist system [1] (left) and the photograph (right).
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Technological Labo, CRX-1) of 30 W. Every time before the experiment, distilled water
(Sanchemipha) of 200 mL is added into the generator container. Meanwhile, pressurized air from gas
bottle goes into the container to keep a necessary pressure. The water vapor is mixed with the air
flow and pumped out through the nozzle into the open space. Because of the temperature decrease,
the vapor condenses into small water droplets and the droplet flow forms the high-speed mist flow.

3. Achievements

Fig. 2 shows the charge decreased with the nozzle temperature. It may because the high
temperature at the nozzle will decrease the condensation of the water vapor and hence, the droplet
size of the mist will be smaller. The smaller mist will evaporate and disappear faster, reducing the
charge arrive at the metal plate.

Symbol Distance to Nozzle
—a— 4 mm

Mean (nA)

1 ! 1
160 165 170 175 180
Nozzle Temperatur (°C)

Figure 2. Nozzle temperature effects on the current.

Fig. 3 shows the relationship between nozzle distance to the current. The current decrease with the
distance increase, and then approaches zero. It is because the charge mainly generated at the nozzle
outlet, where the speed of the flow is highest. With the increase of the distance, the charge reacts
with the ambient air and is gradually absorbed.
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Figure 3. Nozzle distance effects on current.

In figure 4, the heater power increase makes current increase. It may supports that the charge may
come from the Lenard effect but not friction. It shows that the current and charge increased with
power added to the mist generator container. It is because the power increased can generate more
water evaporation, and, hence more droplet condensed at the nozzle outlet. This will cause more
current reaching the metal plate, and generate higher current.

— 225 —



T T
Symbol Nozzle T/ Distance to Nozzle |
% —a— 160°C /4 mm

Current (nA)
T
1

L
75 250 275

Power (W)

Figure 4. Heater power effects on current

4. Summaries and future plans

In this work, the effects of nozzle distance, nozzle temperature, humidity, power added and water
temperature, on the mist current were investigated. The current decrease with nozzle temperature
increase. It may because the decrease of condense rete decreased the droplet size. The current
decrease with nozzle distance increase. It is because the charged mist droplet evaporate during the
transportation. The current increase with power increase. It may because the droplet size increase
and the Lenard effect generate more charges. The mechanism of the charge generation in the
high-speed mist can be further clarified with the results and further investigation.

5. Research results

1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc. (included

international conference without peer review)

[1] T. Sato, S. Fujimura, S. Kanazawa, Y. Xiao, T. Nakajima, S. Liu: Development of
innovative sterilization method by high-speed nanodroplets, 7th Taiwan-Japan
Workshop on Plasma Life Science and Technology (TJPL7, TJPL2023), Hsinchu,
Taiwan, (2023).

[2] Y. -C. Cheng, T. Sato: Electrical Characteristics of High-speed Mists, Proceedings of
the 23rd International Symposium on Advanced Fluid Information (AFI2023), (2023),
pp. 101-103.

3) Patent, award, press release etc.
YunChien Cheng at National Yang Ming Chiao Tung University, Taiwan.
Visiting Professor of the Institute of Fluid Science, Tohoku University (Dec./27/2023 -
March/26/2024)
(Patent) Not applicable
(Award) Not applicable
(Press release) Not applicable
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1. Purpose of the project

This project aims to apply a developed interferometry technique to visualize the mass
diffusion of salt species in water and other complex fluids such as human blood plasma.
We aim to quantify Fickian (isothermal) diffusion coefficients and thermodiffusion
(Soret) coefficients, which are used to better understand the interaction between the
different species.

2. Details of program implement
Measurement of thermodiffusive separation

The phase-shifting interferometry technique (PSI) was developed by Torres et al. in 2012
for measuring Fickian diffusion coefficient D through the visualization of concentration
fields between a high- and a low-concentration solution. The PSI system is shown in
Figure la. In Method A (Figure 1b), we assumed a linear relationship between the
unwrapped phase difference g and the concentration difference AC for determining the
contrast factor CF = Ay / (OP AC), where OP is the optical path of the test cell. If CF is
first determined with solutions of known AC, then the concentration difference between
two unknown solutions can be calculated from the g extracted from the unwrapped PSI
images.

In Method B (Figure 1c), we eliminate the mixing that occurred during the injection
process by placing the solutions separately in a two-chamber cell. With the two solutions
separated, the interference data previously observed (i.e. discontinuities in the phase-
shifted data shown in Figure 1b) disappear. In this technique, due to the partitioning
wall between the two chambers, the numbers of periods between the two solutions cannot
be directly determined visually. Thus, it is important to reduce the OP until there are no
discontinuous changes of ¢ between the two solutions with its value less than one period
(.e. Whigh — Wiow = Phigh — Plow < 21). Since CF is positive, A= ywhigh — Wiow should always
be positive. If ¢nigh — ¢row < 0, then they are not in the same period and 2 should be
added when calculating Aw. The calculation of the phase difference using Method B
should follow Eq. (19). We noticed that the CF measured using the two-chamber methods
is slighter higher, indicating that the mixing during injection (method shown in
Figure 1b) introduced some inaccuracies. All binary NaCl/H20 solution concentration
differences in the paper were measured with Method B, and Method A was used to ensure
the ghigh — Wow < 211.
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Figure 1: Highly accurate measurement of concentration difference with
interferometry. (a) Layout of the polarizing Mach—Zehnder interferometer, which is the
basis for PSI. (b) Method A: the contrast factor CF is measured by smoothly injecting a

low-concentration solution on top of a high-concentration solution. (c) Method B: to
ensure there was no mixing during injection, the two solutions are placed into a two-
chamber quartz cell with an optical path of 2mm.

3. Achievements

We were able to measure a small concentration difference with this setup, below 500 ppm.
This forms the basis for the work we plan for 2024 and beyond, and it is very important
because commercial salinity meters are not accurate enough to quantify small salinity
differences. This setup was at the ANU for quantifying thermodiffusive desalination,
and we plan to use it for other types of characterization.

4. Summaries and future plans

The focus of the collaboration has been more on the measurement of concentration
differences rather than thermodiffusive separation. Measurement of concentration
differences can be applied to thermodiffusive separation as well as many other
phenomena. For example, an area in which we started collaborating based on this project
framework was that of diffusion of sodium chloride in human blood plasma. This was
never quantified before.

This collaborative framework allowed us to strengthen collaborative research on
convective flow resonance (one journal paper), measurement of salt diffusion in human
blood plasma substitute (one proceedings paper) and mass transfer through macro-
isopore membranes (one proceedings paper).
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5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] T. Koizumi, T. Kogawa, J. F. Torres, Y. Kanda, A. Komiya: Controlling instability
waves on vertical natural convection using a buoyant impinging jet, Int. J. Heat
Mass Transf., 148 (2023), 107033, doi: 10.1016/j.icheatmasstransfer.2023.107033.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
[2] R. Zhu, J. F. Torres, S. Moriya, Y. Kanda, A. Komiya, Proceedings of The 33d
International Symposium on Transport Phenomena, Kumamoto, (2023), 149.
[3] J. Zhang, S. Xu, A. Komiya, J. F. Torres, Proceedings of The 339 International
Symposium on Transport Phenomena, Kumamoto, (2023), 204.

3) Patent, award, press release etc.
Not applicable
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1. Purpose of the project

Reactive polymer materials like epoxy resins are widely utilized as products and
reusable ability of polymeric materials have drawn much attention for forthcoming
circulation economy. Meanwhile, the nature of the crosslinked internal networks is
significantly influenced by the chemical synthesis conditions, the composition of the
reactive components, the stoichiometry of the constituents. Investigating the impact of
these factors via experiment is expensive and times-consuming. In the meantime, it is
difficult to observe the cross-linking structure, making it a challenge to uncover

relationships between the polymer internal structure and its intrinsic physical and
mechanical properties. Therefore, we try to use combined the scheme between quantum
chemical calculation and molecular dynamics simulations to simulate the crosslinking
process and investigate the relationship between the thermomechanical properties and
the structure.

2. Details of program implement

Initially, the GRRM software coupled with QC calculations using Gaussian 16
package, was employed to investigate reaction pathways from reactant to products,
calculating activation energy and heat of reaction. The analysis was based on the
B3LYP/6-31G* level theory. The reactions involved in the DGEBA/TGDDM/4,4’-DDS
system are illustrated in Fig. 1.

Then, the crosslinking algorithm for the multicomponent system was developed. The
basic idea of our algorithm is that we first detect the reactive pairs of C atoms in the
epoxy group and N atoms in the amine group when their distances are within the cut-off
distance of 5.64 A, which can be seen as the first criterion. Next, the reaction probability
k1is considered as the second criterion for reaction, which is determined by the Arrhenius
equation. The reaction will occur if P< k (Pis a uniform random number between 0 and
1) and the bonding state as well as the force field is redefined accordingly. Afterwards,
the charges of the atoms around the reaction site will be updated.

In the end, the curing process and thermomechanical properties of multicomponent
system DGEBA/TGDDM/4,4-DDS were investigated. When the proportions of each
component are comparable, the curing process is primarily determined initially by the
component with a lower activation energy and subsequently by the component with a
relatively greater quantity during the high conversion rate stage. Furthermore, a higher
proportion of TGDDM in the DGEBA/ TGDDM/4,4’-DDS system results in an increased
number of ring structures, which in turn leads to enhanced thermomechanical properties.
Our Python-LAMMPS integrated algorithm can be further developed for designing new
multi- component epoxy resin materials.
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Fig. 1. Reactions involved in DGEBA/TGDDM/4,4’-DDS.

3. Achievements

The crosslinking algorithm for the multi-component system was developed. We
uncovered the relationship between the thermomechanical properties and the
crosslinked structure based on our algorithm.
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4. Summaries and future plans

We have already developed the crosslinking process for multi-component epoxy resin
systems. Furthermore, we investigate the relationship between multi-component
systems and the thermomechanical properties. In the future, the plans are as follows:
(1) developing the crosslinking process for the reactive polymer materials, (2)
investigating the catalysist effects on the crosslinking process, and (3) uncovering the
relationship between the thermomechanical properties and the structure and trying to
design the high thermomechanical reactive polymer materials.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] Yinbo Zhao, Gota Kikugawa, Keiichi Shirasu, Yoshiaki Kawagoe, Tomonaga Okabe,
Constructing and characterizing various multi-component crosslinked epoxy resins
based on molecular dynamics simulations with a curing reaction model, Polymer,
297 (2024), pp. 126817.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] Yinbo Zhao and Gota Kikugawa, Stuctural and Thermophysical Properties of Multi-
component Crosslinked Epoxy Polymers: A Molecular Dynamics Study with Curing
Reaction Model, Proceedings of the 23rd International Symposium on Advanced
Fluid Information (AFI-2023), Sendai, (2023), CRF-11, pp. 45-46.

3) Patent, award, press release etc.
(Patent) Not applicable

(Award) Not applicable

(Press release) Not applicable
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Experiment on Mechanical Integrity Evaluation of Degradable Zinc Wire under
Tensile Load in Flowing Medium
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1. Purpose of the project

Biodegradable stents can support the vessel for a period, maintain vascular
patency, and gradually degrade after vascular remodeling finishes, thereby reducing
the limitations of permanent stents. Zinc has become a new type of biodegradable
metal after magnesium and iron due to its suitable degradation rate. Mechanical
integrity is an important index for degradable stents. The mechanical integrity of
zinc is affected by the combined effects of mechanical load and corrosion
environment. The current research on stress corrosion of zinc wire has not taken
into account the influence of corrosion medium flow rate. Therefore, this study
investigated the variation of the mechanical integrity of zinc wire over time in a
flowing medium under tensile load. The experimental results will be used for
parameter modification in the coupling simulation of stent degradation and vascular
remodeling.

2. Details of program implement

The collaborators discussed and made the detailed research plan and the division
based on this program. The research has been finished well up to now and the results
have been published in the Twentieth International Conference on Flow Dynamics,
Sendai, (2023). The details of the research are described as follows:

The diameter of the zinc wire is 0.2mm. Three samples are prepared for each test,
and the final result is the average of the three samples. The change of mechanical
integrity of zinc wire was evaluated by tensile test. The zinc wire was fixed by nuts
and constant strain was applied (Figure 1), which was 0%,2.50 % and 5.00 %,
respectively. After different immersion durations, the tensile properties of zinc wire
were examined.
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Figure 1: Schematic diagram of the test bench

Achievements
As the of immersion duration increased, it was observed that the Young 's modulus
and ultimate tensile strength of zinc wire decreased gradually (Figure 2). With the
treatment of 2.50% tensile strain, the Young's modulus of zinc wire decreased, while
ultimate tensile strength did not significantly decrease compared to the treatment
of 0% tensile strain. With the treatment of 5.00% tensile strain, the Young's modulus
and ultimate tensile strength of zinc wire decreased significantly compared to the
treatment of 0% tensile strain.
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6000 300

0%  2.50% =5.00%
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Figure 2: The Young 's modulus and ultimate tensile strength of the zinc wire as a
function of immersion duration with different tensile strains

Summaries and future plans

In vitro degradation of zinc wire was investigated in a flowing medium under
tensile load. The results suggested that tensile load accelerates the corrosion rates
of zinc wire and the corrosion rates increase with increasing loading levels. This
study could help to understand the effect of complex stress condition on the corrosion
of zinc for the optimization of biodegradable zinc stents. In addition, the
experimental results will be used for parameter modification in the coupling
simulation of stent degradation and vascular remodeling.

Stents are exposed to various types mechanical loadings after implantation, such
as tensile, compression, bending, torsion and fluid-induced shear stress. This study
only includes two types of mechanical loads, and the influence of other mechanical
loads should be considered. These analyses are reserved for future studies.

Research results
Journal (included international conference with peer review and tutorial paper)

[1] X. Zhang, B. Mao, Y. Che, J. Kang, M. Luo, A. Qiao, Y. Liu, H. Anzai, M. Ohta, Y. Guo,

G. Li: Physics-Informed Neural Networks (PINNS) for 4d Hemodynamics Prediction:

— 248 —



An Investigation of Optimal Framework Based on Vascular Morphology, Comput. Biol.
Med., 164(2023), pp. 107287, doi: 10.1016/j.compbiomed.2023.107287.

[2] S. Chen, T. Du, H. Zhang, J. Qi, Y. Zhang, Y. Mu, A. Qiao: Methods for Improving the
Properties of Zinc for the Application of Biodegradable Vascular Stents, Biomater.
Adv, 156(2023), pp. 213693, doi: 10.1016/j.bioadv.2023.213693.

[3] J. Qi, H. Zhang, S. Chen, T. Du, Y. Zhang, A. Qiao: Numerical Simulation of Dynamic
Degradation and Fatigue Damage of Degradable Zinc Alloy Stents, . Func.
Biomater.,14/11(2023), pp.547, doi:10.3390/jfb14110547.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[4] H. Zhang, Y. Yang, S. Chen, A. Qiao, H. Song, W. Fu, H. Anzai, M. Ohta: Numerical
Simulation of Vascular Remodeling Under Multiple Mechanical Stimuli, 7wentieth
International Conference on Flow Dynamics, Sendai, (2023), 0S9-2.

[5] S. Chen, B. Guo, T. Du, A. Qiao, H. Song, W. Fu, H. Anzai, M. Ohta: Experiment on
Mechanical Integrity Evaluation of Degradable Zinc Wire Under Tensile Load in
Flowing Medium, Proceedings of the Twenty-third International Symposium on
Advanced Fluid Information, Sendai, (2023), CRF-35.

[6] B. Guo, S. Chen, Y. Zhang, Y. Yang, A. Qiao: A Numerical Study on the Effects of
Mechanical Stimulation and Endothelium Recovery Rate on Vascular Remodeling
After Percutaneous Coronary Intervention, Twentieth International Conference on
Flow Dynamics, Sendai, (2023), 0S11-9.

3) Patent, award, press release etc.
Not applicable.

— 249 —



AEE J23R002
X5 ER[S43EEe s N =S e e
U B FJ e =A 7 abyiy

hFFEIAR 2023.4 ~2024.3
Bl TR 24-H

HEEMMBOERIZE T HETF - D TFRIEE

Theoritical Simulation on Growth of Functioning Materials

e B, R S, ST B9l SARDAR Cripasindhu***
SAHOO Sumanta***, YU Ruei-Sung****, ZZJfl Fffix >+ jmik Rz
CAN Musa®*###*

*HUGARNEA TBOE N | ST RE SRR A A S0ET
PR FIRAE IR, * B ENL IR T
ek VBRI, e RS Uy X« T RNV AR - I LR
S VS N
THGEE, TTRTPISEE

1. HiE/M
U ar® 100 [EOBENESCEEND 200 (FOIREEZRT 7T 7 = 3k A 7R DD
RSN TV D. 2O GICIIAED DB TH Y, EOREERE S LETH D, Tk
TIZ, 79 7xr%Z0HE LT, WREMMEIOT & 3 v Uik 2 ERRIVICHEGE L TV
4. AHFZETIE, SRR B OB EIBIRICOWT, BERAIREZRAIT, IR AHT 5
LT, MEHARRICET ARmE L s 2 L2 B E T 5.

2. PIRMEOAR
:mif“/ J = V%?Fﬁhfmﬁfz{ K%Aﬁi‘zob\f F&%I*/I/%‘H iﬂﬁﬁ“ 5 & T‘ﬁ‘*aaﬁi‘z

%:EZ\/WF~ 2 H Lt. F$7 725' %:%\%%ﬂﬁ%ﬁi Z@ELZET X~/\~t/v%1’ﬁ
KL, WETFNX—IZEHTH LT, RES T AL —DFRFH TOLENEEFAE LT,

(3)

o & e

1 A= =M HWRFES T A X —. (1) KEFET, Q) ~EE, Q) J /7
F 7 x  (TXSER.

— 250 —



£ 2 [RFY T AL —OLREMETH.

Hitlt SR AL FITT T SNEBR
STO Sr A
Ti DU
0] DU
YT AT Al
@) ERENNMAS
MgO Mg DU SHAAYAS
0] A
Si(001) Si FEBRIR SHAAYAS
Si & Si dfH HEERIR

RF7 T AZ—L LT, K1LITRT I, DRERT, QANEREQ)T /777227
XANEEZ MW, £, BhofEis LT, Bk~ %> 7 4Mg0), 477147, 'V
a8, FH A b T U ASTO) ZiRAT. NIRRT T A X — b B DS
BE(LZITV, 2= =R V2B LT, & HICA— 3 — L TSRt b1T-> T 5.
WoE TRV —IT, RFEY T AL —BRE R, A—/N—ELORTRLFX— Ik
ThHEEb 7.

Eads = Esub + Ecluster — Esupercell

Z ZC, Eads, Esub, Ecluster, Esupercell |3Z1 24, WA R/LX—E M, KFEZ T A
Ho—, A== )LDOETFVF -T2 5.

WAETRNFX—Z K DKFEIEN CTOIRE Y T AZ—DREMIIR 1 OL Ty, X
WA harF U LHM ETOREENT RIS, FR7 7774 "X —7 v MLz
U — W — 2BV O EICRIE L, 2oz 51 I MBMEEAFM) CEIZE L7-. Bk
%O AFM oL LT, MgO itk & STO Fatk EOiHR I Z X 2 1R T. WEFT R /¥
—Z AW THEEY, STO bR ETIT AR AME L TV A Z &R gnoTe.

on STO

2 A= 3—B W REZ T 22—, (1) KRERT, 2 ~EE B +7
57 = L (TXRNER).

— 251 —



3. HIRBEEZEDERKR
ZIVE TR IR E DT 9 DFEE & 72> T Schlom & O TECERREE T2 E M
LEE L T ole, AR TIRE LI2E = VX — O LV, fEfhaE D1
YR D Z ENFRERS LA LMo T, £, WETRAAX—EMOMEICHL WD Z
& C, FEBERORIROFIOHMGRINOFEE & 72D Z &3 3inoTz.

4. FEHESHNDEE
WETRNFX—ICEHT D Z & TRMOBERRR, BEREUAMEE DO DFENRD A 7
V==V TRAREE o te. MEHERROBEMGERINO 70O DFFHE L 705 K 912, HIZEFED
FEWREMEICOBREED D TETHD. Tz, HHEIR FRREWD, EoR#EbE
BNT=TERELRRDL LT THS.

5. WAERE
1) s EEOTEESE SBanEEaT)
2L

2) EF=®E - ERFER - IRE - OEERE

[1] S. Kaneko, M. Kurouchl M. Yasui, D. Shiojiri, M. Mitsuhashi, R.S. Yu, S. Yasuhara, M.
Can, K. Sardar, S.K. Sahoo, M. Yoshimura, T. Tokumasu: Twenty-third International
Symposium on Advanced Fluid Information, Sendai, (2023), CRF-20, pp. 68-69.

[2] S. Kaneko, T. Tokumasu, M. Yasui, M. Kurouchi, M. Mitsuhashi, R. S. Yu, S. Yasuhara, T.
Endo, M. Can, K. Sardar, S. K. Sahoo, M. Yoshimura, A. Matsuda, M. Yoshimoto: Stability
of Carbon Cluster on Candidate Substrates Evaluated by Molecular Dynamics, MRS2023
- San Francisco, San Francisco, U.S.A. (10 April 2023) NM04.09.02.

[3] S. Kaneko, T. Tokumasu, M. Yasui, M. Kurouchi, S. Yasuhara, T. Endo, M. Can, R. S. Yu,
S. K. Sahoo, K. Sardar, M. Yoshimura, A. Matsuda, M. Yoshimoto: Prediction of
Orientation of Epitaxial MgO Film Deposited on Si Substrate, JUMRS-ICAMZ2025,
Singapore, (26 June 2023) A-0130.

[4] S. Kaneko, T. Tokumasu, S. Tanaka, C. Kato, M. Yasui, M. Kurouchi, D. Shiojiri, M.
Mitsuhashi, R. S. Yu, S. Yasuhara, M. Can, K. Sardar, S. K. Sahoo, M. Yoshimura A.
Matsuda, M. Yoshimoto: Synthesis of super-flat graphene on substrates selected by
molecular dynamics calculation, Micro and Nano Engineering Conference (MNE2023),
Berlin, Germany, (26 Sep. 2023).

[6] &8 ¥rér 7 7 7 = AEBIEDIRSE, FEERIEEE S HRlE - =12 hr=2

AR 16 [IEFHI I FIies, MBI S 2 F i TERE o 2 —, (2023 4 11
H 9-10 A).

[6] S. Kaneko, T. Tokumasu, M. Yasui, M. Kurouchi, C. Kato, S. Tanaka, S. Yasuhara, M. Can,
R.S. Yu, S. K. Sahoo, K. Sardar, M. Yoshimura, A. Matsuda, M. Yoshimoto: Super flat
graphene grown on substrate selected by using molecular dynamics calculation, MRES-
Boston, Boston, U.S.A., (2023), QT04.03.03.

=

3) T (FEF, FE, YRAIIRRE)
L

— 2562 —



Project code J23R003

Classification International Multiple
Collaborative Research Project

Subject area Aerospace

Research period | April 2023 ~ March 2024

Project status 1st year

Prediction and Optimisation of Axisymmetric Shock Reflection in Supersonic
Aerospace Applications

Hideaki Ogawa*¥, Masanobu Matsunaga*, Aoi Shibakita*, Chihiro Fujio*
Justin Kin Jun Hew**, Roderick Boswell**, Sannu Molder***

Ben Shoesmith**** Rabi Tahir**** Evgeny Timofeev****
Yoshitaka Higa***** Taro Handa***** Yasumasa Watanabe*****
Kiyonobu Ohtani******{+
*Department of Aeronautics and Astronautics, Kyushu University
**Plasma Power and Propulsion Laboratory, Australian National University
***Department of Aerospace Engineering, Ryerson University
****Department of Mechanical Engineering, McGill University
*k***Department of Advanced Science and Technology, Toyota Technological Institute
wk*E**Institute of Fluid Science, Tohoku University
TApplicant, T1IFS responsible member

Ring wedge

v .

1. Purpose of the project ‘
04 1 15 2 25 # '

Centreline shock reflection commonly
takes place in axisymmetric flowfields of
various aerospace applications including T 0.01
supersonic air intakes and nozzles. Mach
reflection comprising an incident shock,
a reflected shock and a Mach stem (disc)
(Fig. 1) occurs at the centreline, because
regular reflection is precluded by theory
at the symmetry axis in the inviscid regime and at high Reynolds number.

-0.06

x [m]
Figure 1: Shock system in ring wedge intake

The flow undergoes an abrupt change across the Mach disc, which can exert crucial
impact on the performance of the applications, responsible for undesirable events such
as intake unstart and under-expanded nozzle operation. On the other hand, it can also
represent a potential benefit for applications that can take advantage of high
pressure/temperature downstream of the Mach disc, which may be suitable to be used
for fuel ignition and flame holding in scramjet propulsion for instance, if designed and
handled appropriately. The characteristics and behaviour of centreline shock reflection,
however, are yet to be fully understood, in contrast with planar shock reflection, whose
behaviour is well understood hence predictable.

This project aims to develop a methodology for accurate prediction and optimisation of
centreline Mach reflection by formulating its behaviour and characteristics in a best-
practice approach coupling experiment, computation, theory and optimisation. Shock
structures and centreline flow properties will be measured optically and via molecular
tagging velocimetry in supersonic experimental facilities, in conjunction with numerical
simulation using adaptive mesh refinement and viscous correction. The attributes for
the incident shock and Mach stem will be used in analytical approaches based on
Guderley’s analogy, three-shock and curved-shock theories. The resultant methodology
will not only serve as a useful design tool for axisymmetric supersonic applications but
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also provide valuable insights into underlying flow physics and key design factors.

The flow undergoes an abrupt change across the Mach disc, which can exert crucial
impact on the performance of the applications, responsible for undesirable events such
as intake unstart and under-expanded nozzle operation. On the other hand, it can also
represent a potential benefit for applications that can take advantage of high
pressure/temperature downstream of the Mach disc, which may be suitable to be used
for fuel ignition and flame holding in scramjet propulsion for instance, if designed and
handled appropriately. The characteristics and behaviour of centreline shock reflection,
however, are yet to be fully understood, in contrast with planar shock reflection, whose
behaviour is well understood hence predictable.

This project aims to develop a methodology for prediction and design of centreline Mach
reflection by formulating its behaviour and characteristics in a best-practice approach
coupling experiment, computation, theory and optimisation. In particular, shock
structures and centreline flow properties will be measured optically and via molecular
tagging velocimetry in supersonic experimental facilities, in conjunction with
computational simulation using adaptive mesh refinement and viscous correction. The
attributes for the incident shock and Mach stem will be used in analytical approaches
based on Guderley’s analogy, three-shock and curved-shock theories. The resultant
methodology will not only serve as a useful design tool for axisymmetric supersonic
applications but also provide valuable insights into underlying flow physics and key
design factors.

2. Details of program implement

This research project will develop a methodology for prediction and design of axisymmetric
Mach reflection by overcoming limitations and challenges that hamper the investigation
of centreline shock reflection including; (i) Mach reflection must occur at the focal point on
the centreline where the incident shock impinges in the inviscid regime, as the occurrence
of centreline regular reflection is prohibited by theory due to singularity at the symmetry
axis; (i) Such Mach reflection resembling regular reflection is characterised by a
minuscular Mach stem (disc), which poses a significant challenge due to the limitations in
mesh resolution in simulation and the difficulties in using optical apparatus and
measuring the centreline flow properties in experiment in traditional approaches; (iii) The
presence of flow viscosity can have manifold effects on the shock structure, responsible for
boundary layer on wall surface and dispersion of shock reflection on the centreline; and
(iv) The incident shock is characterised by considerable curvature in axisymmetric
supersonic intakes and nozzles, rendering it difficult to apply the conventional three-shock
theory at the triple point that assumes straight shock components.

The proposed research is planned in a multidirectional approach combining experiment,
computation, theory and optimisation; (a) Experimental testing using supersonic ring
models is to be conducted in the IFS ballistic range for optical flow visualisation, in
conjunction with supersonic wind tunnel experiment where the centreline flow
properties will be measured using a state-of-the-art laser diagnostics technique; (b)
High-resolution numerical simulation employing local adaptive mesh refinement is to be
performed to resolve the detailed shock structure at a minuscule level, in conjunction
with viscous correction to allow for model design that takes the effects of boundary layer
into account; (c) Theoretical analysis based on the curved shock theory and Guderley
singularity along with the method of characteristics is to be conducted to enable
formulation of the Mach reflection configuration for given inflow conditions and
intake/nozzle geometries; and (d) Design optimisation based on evolutionary algorithms
in order to determine the intake/nozzle geometries that can achieve desired shock
characteristics and/or performance.
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3. Achievements

1. Analytical modelling of incident shock in ring intake
with streamwise curvature

An analytical model has been proposed to predict the shape
of the incident shock generated in ring intakes with
streamwise curvature (Fig. 2) on a theoretical basis. In this
model, the streamline curvature downstream of the
incident shock is assumed to be equal to the ring curvature
and remain constant. Euler simulations have been | _ _  Axis
performed for wvarious ring shapes and freestream

conditions to compare the shape of the incident shocks with
those predicted by the analytical models in the region
unaffected by expansion waves from the ring trailing edge.

Figure 2: Ring geometry
and parameters

Numerical simulations have been performed using computational fluid dynamics (CFD)
to evaluate the analytical model in a parametric manner. The ring geometry is defined
by 4 geometric parameters, namely the ring radius, the leading-edge angle, the
normalised radius of curvature, and the normalised width, as shown in Fig. 2.

Figure 3 shows an example of the Mach number and static pressure distributions,
indicative of the occurrence of Mach reflection as well as the presence of a Mach stream
downstream of the Mach disc. Figure 3 (b) displays successive compression waves
emanating from the ring wall, signifying increasing static pressure due to isentropic
compression of supersonic flow along the concave ring surface. The dotted line shown in
Fig. 3 (b) indicates the position of the leading expansion wave generated at the ring
trailing edge, which intersects the incident shock.
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(a) Mach number (b) Static pressure
Figure 3: Flowfield (6v=5° rw=2.5,w = 0.4, M = 2.5)

Figure 4 indicates the part of the incident shock shapes unaffected by expansion waves
(Fig. 3b) generated with various ring widths. The overlap of the curves indicates that the
shape of the incident shock in the region unaffected by the expansion waves remains the
same regardless of the ring width. This signifies that there is no need to consider the
ring width as a variable in the modelling of axisymmetric incident shocks.

0.025 By
023 0.025 S~ A
r— L \ w
g U = ~o . | w=0.6
Z0015 & 0.02 \k\\n
0.01 0015 9
0.005
0 0.02 0.04 0 001 0.02
x [m] x [m]
(a) 6y =5° rw="5,M»=3 (b) G =2.5° rw=2.5,Mx=3.5

Figure 4: Comparison of incident shock shapes with various ring widths
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Figure 5 schematically depicts the configuration of the Mach shock system as well as the
nonorthogonal curvilinear &7 coordinates defined in this model. is the flow deflection
angle and Sis the shock angle.

O'(xg,p) Ring wedge

The original model proposed by Ren et al. has
been extended by applying the curved shock
theory (CST) to adapt to rings with curvature.
This extention has effectivly removed the o
main limitation associated with the Incident

Reflected

assumption of Ren et al’s model, which shock shock
primarily assumes a linear incident shock,

while the extended model still assumes the oy o
streamwise curvature downstream of the Mach disc
incident shock D; to be constant, fixed at the X

value of the ring curvature at any location of
the incident shock. The extended differential
equation has consequently been derived as:
1+RZ [o8 1 1 dp1— M? 1 -
= C0t0 + tan 0 [ﬁtane TR, Typog MZ 1 —thane]
1 D,(R, +tan8 —sin20) ((1 + R, cotH)?
[E_ sin@tan® — RZ cos 6 { cotd — R,

Figure 5: Schematic of Mach reflection
and coordinates

(M? — 1) — (cot 8 — Rx)}]

The extended analytical model that incorporates CST has been found to be able to predict
the shape of incident shock when the ring has no or small streamwise curvature (Fig.
6a), while deviations have occurred from the CFD results if the ring has relatively large
curvature (Figs. 6b-d). The angle of the incident shock increases because of compressive
waves that occur on the concave ring surface, and such influence becomes more
pronounced for larger curvature. This has subsequently resulted in larger errors in the
predicted incident shock shapes, especially for ring shapes with large wall curvature,
suggesting the room and need for further improvement in analytical modelling (detailed
information of analytical modelling can be found in Ref. [4]).
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Figure 6: Comparison of incident shock shapes amongst CFD,
original and extended models
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2. Elffects of curvature of ring intake on axisymmetric flow

The influence of curved rings on axisymmetric flow (see Fig. 7 for the definitions used in
this study) has also been examined by comparing the flowfields in ring intakes without
and with curvature with the identical contraction ratio in accelerated freestream.

w w
Figure 8 displays the Mach number SOy Sy
distribution at the critical Mach - w = p ,7 q E
number, at which the shock attaches M, = M, =
to the leading edge or the lip of the = =

ring (the critical Mach number is Centreline Centreline

M, = 3.50for 6, =5° in this case). Figure 7: Ring geometries and parameters

Table 1 shows the relationships (left: ring wedge without curvature,
among Mach number, deflection angle right: ring with curvature)

and shock angle. The close agreement

of the shock angle with the theory After 967000 Steps, t= 6.054074E-3 (5), dt= 3.957€-9 (5), 31408 nodesgpiEent

indicates that the shocks attached to / ”MI
the rings are locally strong oblique 3320

2.9540)

shock waves near the leading edge at
the critical Mach numbers.

25840
2.1E40,

1.6E40,

According to the Kantrowitz condition
applied to isentropic flow downstream
of the bow shock under quasi-one-
dimensional flow assumption, the

1.2649]

p—

§.26-1

a.1El1

upstream Mach number at this g i scoceie seotmor, nmh mmber, 1, mssoc
contraction ratio would be expected to Figure 8: Mach number distributions at
be 2.85. However, there is a disparity critical Mach number (black
in the critical Mach numbers among lines indicate sonic lines)
the three cases, which may be s

. . ) Table 1 Shock angles at critical
attributed to multidimensional effects. The &

: ' > Mach numbers
ring wedge without curvature exhibits a 0 Moot B Bin
criticai meas eory

critical .Mach nqmber that is the closest to the 20° 3.14°  82.16°+0.85° 82.51°
theoretical predictions. It has also been found 10° 334°  8642°+ 1.19°  86.74°
that flow unsteadiness exerts little influence 50 3500 88.1 4010'500 38.46°
on the critical Mach number when the overall —
intake length is small in relation to its diameter (details can be found in Ref. [2]).

3. Shock reflection from axial cylinder in axisymmetric flow [3/

Shock reflection on an axial cylinder has been investigated, focussing on its transition
between regular reflection (RR) and Mach reflection (MR), which occur at larger and
smaller cylinder radii, respectively, when the shock impinges onto an axial cylinder, as
depicted schematically in Fig. 9. The radius of the cylinder sets the incident shock angle.

)& )&
B y

I |

axis of symmetry axis of symmetry

Figure 9: Schematics of regular reflection (RR) at large cylinder radii (left)
and Mach reflection (MR) at small cylinder radii (right)
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This study has been conducted in a semi-analytical approach in conjunction with mesh-
adavtive CFD. In the semi-analytical approach, the methods of characteristics (MOC) is
used to generate predictions of the incident shock, and the MOCMR model for the
prediction of the MR flowfield is applied to support the MR-RR transition predictions in
comparson with CFD predictions.

It has been shown that simulations conducted with a fixed cylinder radius can generate
results with RR at cylinder radii that are extremely close to the transition location
predicted by the quasi-steady variable cylinder radius approach, and therefore it is
concluded that either approach is suitable for the determination of RR-MR transion in
this case. Figure 10 shows the flowfield immediately before and after RR-MR transition
at the mesh reflinement level MRLj. = 10. The MOC prediction of the incident shock is
shown to lie on top of the CFD one, which largely justifies the use of MOC to determine
the incident shock angle associated with transition.

On the other hand, the results indicate RR-MR transition at an incident shock angle that
is ~ 0.20 lower (stronger incident shock) than suggested by the theoretical detachment
limit, 1.e., slightly outside of the dual solution domain. Results also indicate significant
sensitivity to mesh fineness, and it remains possible that with extremely fine meshes,
RR-MR transition could be predicted at incident shock angles closer to, or even greater
than, the theoretical detachment limit value. The combined approach of CFD and MOC
predicts the MR-RR transition shock angle to be 142.11°, which is 0.53° steeper than that
given by the von Neumann criterion, 1.e., slightly inside of the dual solution domain. The
RR-MR and MR-RR transition points were predicted to be distinctly different from one
another, and therefore hysteresis was demonstrated. This hysteresis is distinct from the
well-known wedge-angle-driven hysteresis in which the shock angle varies due to
changes in the wedge angle. (details of this study can be found in Ref. [3]).
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Figure 10: CFD-predicted Mach number flowfield at the point of shock reflection
for RR at y. = 0.5299 (left) and MR at y.; = 0.5298 (right) at MRLgisc = 10
(green line indicates cylinder surface, and red line shows MOC-

predicted incident shock)

4. Viscous effects on centreline shock reflection in ring intake

The characteristics of viscous flowfields shock reflection in axisymmetric ring intakes

have been investigated, with
particular focus on its transition.

Table 2: Freestream conditions of 5 cases

The leading-edge angle at which _€ase  po[Pa] A [m] Re Kn

the maximum pressure peak on 1 100,000  3.78x107  5.88x10*  6.30x10”
the axis occurs has been explored 2 75,000  5.03x107  4.41x10* 8.40x10”
for 5 cases (Table 2) with different 3 50,000 7.57x107  2.94x10* 1.26x10*
freestream total pressure values, 4 25,000  1.51x10°  1.47x10* 2.52x10*
and hence Reynolds and Knudsen 5 12,500  3.03x10° 7.35x10% 5.04x10*
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numbers, representing different levels of viscosity. Viscous flowfields in ring intakes are
calculated by solving the Navier-Stokes equations assuming slip surface on the ring wall.

Figure 11 shows the relationship
between the leading-edge angle 6 at the
maximum static peak pressure and the
Reynolds number Re. The leading-edge
angle at maximum peak pressure
increases rapidly as the Reynolds
number decreases. This is indicative of
the increasing influence of viscosity on
the leading-edge angle at which
maximum peak pressure occurs at lower
Reynolds numbers.

Figure 12 displays the Mach number and
static pressure distributions on the axis
for Case 4. It compares

3
2.5
o 2
9]
=2
15
1
0.5
0 2 4 6
Re x10*
Figure 11: Variation of leading-edge angle

at maximum peak pressure with
respect to Reynolds number

3

the CFD results for 9 10

) —— g =1 [deg]
leading-edge angles 0 -6~ =15 [deg] 25 =
and a theoretical value B | R I z - 1-325[(52;]’&] —— g=1[deg]
that from the normal = §=1875[de 2 o =15 [deg]
6 [deg] 6= 1.625 [deg]
shock relation for a 8 - ¢=2 [deg] s — =175 [deg]
Mach disc that would & - 33:;5[(5:;]%1 : & #=1875 [deg]
take place in Mach > §=12.5 [deg] 1 - Z fg E(;eSg]de
reflection in inviscid " - - Theory e i [(Eeg%]
flow regime. In this 0.5r- - §=2.5 [deg]
case, the maximum - - Theory

peak pressure has
been found to occur at
a leading-edge angle of
1.875° (Fig. 12a). In
the wvicinity of this
angle (@ ranging from

0
0.012 0.013 0.014 0.015
x [m]
(a) static pressure

0.012 0.013 0.014 0.015

x [m]

(b) Mach number

Figure 12: Centreline property distributions
(Case 4, Re = 1.47x10%)

1.75° to 2.25°), the static pressure exceeds the theoretical values. However, in case with
smaller & values (1° and 1.5°), the static pressure peaks are smaller. For large #values,
the peak Mach number aligns with the theoretical value, indicating the occurrence of
Mach reflection (Fig. 12b). Conversely, when @is small, the Mach numbers remain above
1, indicating the absence of Mach reflection. However, unlike the static pressure
distribution, no distinct Mach number distribution can be observed at the state of

maximum peak pressure (0= 1.875°).

Figure 13 shows the flowfield at the
state of maximum peak pressure (6=
1.875°), indicative of thick, curved
incident and reflected shock waves
and a subsonic region downstream of
the reflected shock as a result of
strong viscosity. Viscous effects on
such flow characteristics have been
found to become more pronounced at
lower Reynolds number (detailed
information on these studies can be
found in Refs. [4] and [5]).

i:‘j Mach number: 0.5 1
}-\

1.5 2 25

00.01226 0.01228 0.0123
x [m]

0.01232 0.01234

Figure 13: Mach number distributions (close-up)

at state of maximum pressure peak
(Case 4, Re = 1.47x10%, 8= 1.875°)
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5. Experimental study on centreline shock reflection in ring intake

The flowfields in ring intakes at freestream M, =2.5 0.08

have been visualised by the PLIF (Planar Laser-
Induced Fluorescence) method using acetone as a

tracer molecule in a suction-type supersonic wind 0.06 | .
tunnel at Toyota Technological Institute. °

L ]
The variation of the Mach disc radius with respect \4: 0.04 | v o .
to the Reynolds number is plotted in Fig. 14 for the = M .
leading-edge angle of 6.7°, in comparison with the ra/re=0.0227 v

CFD results obtained by solving the Navier-Stokes O y

v CFD (8,26.7°)

equations assuming non-slip, adiabatic wall surface o PLF (6.26.7%)
w— .

on the ring wall. Reasonable qualitative agreement

0 L L

can be seen in the decreasing tendency of the Mach 0 05 1 15

disc radius with the Reynolds number between the Re [*10°]
experimental and CFD results. Figure 14: Variation of Mach disc

Figure 15 compares the visualised shock system in
the ring flowfield for the leading-edge angle of 6.7°
at the Reynolds number of 6.64x10* between experiment using PLIF and CFD simulation,
indicative of good agreement, with a distinct axisymmetric Mach reflection comprising a
Mach disc, incident and reflected shocks, and a slipstream clearly captured in both cases
(detailed information on this study can be found in Ref. [6]).

Reynolds number

p/pinﬂow
3.5

r[mm]
n
T
r[mm]
EY
T

X' [mm] | X" [mm]

Figure 15: Comparison of Mach reflection between experiment and CFD
(Re = 6.64x10%, 6, =6.7°)

4. Summaries and future plans

An improved analytical method for predicting the incident shock in ring intakes has been
developed by incorporating the streamline curvature behind the shock based on the
curved shock theory (CST). The influence of streamwise curvature has been examined,
revealing the existence of strong oblique shocks at the critical Mach number. A semi-
analytical method has been proposed and validated for shock reflection and its transition
of the incident shock from an axial cylinder. New insights have been gained into viscous
effects on the centreline flow properties at transition in ring intakes by numerical
investigation. Ring flowfields have been studied and visualised experimentally.

Future plans include full implementation of CST for analytical incident shock modelling,
development of prediction methods for the entire Mach shock system and transition of
centreline shock reflection in inviscid and viscous regimes in ring intake flowfields.
Further insights will be gained by multi-objective design optimisation of ring intakes via
surrogate-assisted evolutionary algorithms and data mining. The results will be verified
by experimental investigation using the IFS ballistic range and supersonic wind tunnels.

— 260 —

radius with respect to



5. Research results

1)

2)
[1]

3)

Journal
Not applicable.

International and domestic conferences, meeting, oral presentation etc.

Matsunaga, M., Ogawa, H., Hew, J. K. J., Boswell, R. W., Higa, Y., Handa, T., Molder
S.: Shape Characterisation of Curved Incident Shock Waves in Axisymmetric Ring
Intakes with Curvature, Proceedings of the Thirty-fourth International Symposium
on Shock Waves, Daegu, Korea (2023), T15-0180.

Shibakita, A., Matsunaga, M., Ogawa, H., Tahir, R., Hew, J. K. J, Boswell, R. W.:
Numerical Investigation of Effects of Ring Curvature on Starting Characteristics of
Supersonic Ring Intakes, Proceedings of the Twentieth International Conference on
Flow Dynamics, Sendai (2023), GS1-30.

Shoesmith, B., Timofeev, E., Ogawa, H.: Shock reflection from an axial cylinder in
axisymmetric flow, Proceedings of the Twentieth International Conference on Flow
Dynamics, Sendai (2023), OS7-6.

Ogawa, H., Matsunaga, M., Shibakita, A., Fujio, C., Hew, J. K. J., Boswell, R. W.

Molder, S., Shoesmith, B., Tahir, R., Timofeev, E., Higa, Y., Watanabe, Y., Handa, T.,
Ohtani, K.: Numerical Investigation of Viscous Effects on Centreline Shock
Reflection in Supersonic Ring Intakes, Proceedings of the Twenty-third International
Symposium on Advanced Fluid Information, Sendai (2023), CRF-52.

Matsunaga, M., Hew, J. K. J., Shibakita, A., Ogawa, H., Boswell, R. W.: Numerical
analysis of viscous effects on transition of centreline shock reflection in supersonic
ring intakes, Proceedings of the Twenty-first Australian Space Research Conference,
Hobart, Australia (2023).

Higa, Y., Matsunaga, M., Fujio, C., Ogawa, H., Ohtani, K., Handa, T.: Study on
Reynolds-Number Dependence of Axisymmetric Shock Reflection in Supersonic Flow,
Proceedings of AJKFED 2023 (ASME-JSME-KSME Joint Fluids Engineering
Conference), Osaka (2023), 3-05-2.

Hew, J. K. J., Matsunaga, M., Ogawa, H., Boswell, R. W., Mélder, S.: Analytical and
Numerical Studies of Shock Wave Reflection in Axisymmetric Internal
Flows, Proceedings of the Twentieth International Conference on Flow Dynamics,
Sendai (2023), GS1-31.

Hew, J. K. J., Boswell, R. W., Matsunaga, M., Ogawa, H.: Focussing of Weak Conical
Shocks at Nearly Glancing Incidence, Proceedings of the Thirty-fourth International
Symposium on Shock Waves, Daegu, Korea (2023), T15-0190.

Patent, award, press release etc.
Not applicable.

— 261 —






2. MARRBESE

<I) 37'[279—/.&5«»

S Iﬁl‘ﬁl

x>






Project code J23Ly01

Classification LyC Collaborative Research Project
Subject area Nano-micro

Research period April 2023 ~ March 2024

Project status 2nd year

1.

Active Control of Protein Mass Transfer by Membranes with Various Pore Patterns

Atsuki Komiya*}, Sébastien Livi**§+
Juan F. Torres***, Ruiyao Zhu* ****
*Institute of Fluid Science, Tohoku University
**IMP, INSA Lyon, Université de Lyon
***Australian National University
****Department of Mechanical Engineering, Tohoku University
TApplicant, ¥Non-IFS responsible member

Purpose of the project

This study focuses on the mass transfer control of protein, and quantitative
evaluation of mass transport phenomenon by changing the pore size and patterning
of membrane. To achieve an ideal crystal growth process under gravitational
condition, the authors are considering a locally active control of mass flux of protein
by using a functional membrane. The transient field of lysozyme in hindered
diffusion is carefully visualized with changing the condition such as microchannel
and pore size by using optical interferometer in this study. The capability and
technique for active control of protein mass transfer are also discussed in this study.

Details of program implement

This study focuses on the hindered yet controlled mass transfer phenomenon by
using several types of macro-pore membranes. In this study, a phase-shifting
interferometer was employed. The membranes tested in the study had different pore
sizes but the same porosity, ranging from 25 to 300 microns. The size information of
the pores on the membranes is shown in Table 1. The diffusion rate was measured
and the influencing factors were analyzed at different stages of the diffusion process.

The results presented in Fig. 1 revealed three distinct trends in the rate of protein
passing through the membrane when the pore diameter was between 25 and 300
microns. These findings suggest that the impact of different factors on protein
diffusion varies depending on the pore size of the membrane. Particularly, the
concentration field of neighboring pores had a greater impact on protein diffusion
when the pore size was larger. When the pore size was moderate, the hindrance effect
of the membrane on protein diffusion was deemed the dominant factor. Notably, the
results showed that Pepsin, whose molecular weight is intermediate between BSA
and Lysozyme, displayed different trends, indicating that factors beyond pore size
and membrane characteristics also influence protein diffusion. In particular, the pH
value of the protein solution was recognized to be an important factor.

These findings have important implications for designing and optimizing
membrane-based processes 1n fields such as biotechnology, medicine, and
environmental science. Specifically, the results suggest that the protein molecular
size and pH value of the solution should be considered when designing and
optimizing membrane-based processes. By understanding the relationship between
these factors and protein diffusion, researchers can develop more efficient and
effective membrane-based processes for a variety of applications.
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Figure 1 : Relationship between penetrated
mass rate and pore size

3. Achievements

Two years have passed, and we could accumulate the experimental data of
protein diffusion. The achievement level of this year could be evaluated at 85%. We
have one special lecture in China and three general presentations in international
and national conferences. Also, one PhD student is staying in Lyon for 1 year as
double-degree student. Through the series of visualization experiments, the
dependencies of molecular structure and macro-pore patterning are clearly
measured and discussed. This might contribute to active control of protein mass
transport phenomena in aqueous solutions.

4. Summaries and future plans

This study investigated protein diffusion through macro-porous membranes and
identified three key factors: 1) the experiment results confirmed the influence of
neighboring concentration, 2.) in some range of pore’s size, the hindering effect of the
membrane wall dominates, 3) preliminary analysis suggests that pH value may play
a role in the differential diffusion of Pepsin. The findings contribute to
understanding protein diffusion mechanisms and membrane transport, also have
implications for suppressing natural convection during protein crystal preparation
and improving membrane-based processes.

5. Research results

1) Journal (included international conference with peer review and tutorial paper)
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2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)
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by membranes with various pore patterns, Proceedings of 20th International
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membrane, Proceedings of the 60th National Heat Transfer Symposium of Japan,
Fukuoka, (2023), H1425.
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Investigation of a Predictive Therapeutic Response under Controlled Oxygen
Condition in Cancer Patient—derived Organoids

Nicolas Aznar*t, Kenichi Funamoto**§+
Jean-paul Rieu*, Satoshi Aratake**
*University Claude Bernard Lyon 1

**Institute of Fluid Science, Tohoku University
TApplicant, T+IFS responsible member

1. Purpose of the project

Although some cancers are effectively treated through the standard strategy of
surgery, radiation and/or chemotherapy, some patients have a recurrence of their cancer
and a life-threatening spread to other parts of the body. Despite decades of research, we
are still unable to predict which cancers will be efficiently treated and which are likely
to spread, thus there is an urgent need to find new or better treatment alternatives for
colorectal cancers (CRC). Cancer stem cells (CSC) located within the tumor constitute a
key medical issue. Due to their high plasticity, this particular cancer cell population is
extremely resistant to conventional therapy and responsible for the recurrence of the
disease in patients. Therefore, identify novel mechanisms regulating cancer cell
plasticity and targeting those CSCs is a prerequisite to open novel therapeutic avenues.
While normal cells need the right balance (not too little/not too much) in Oz concentration
to stay healthy, cancer cells in the other hand reside mostly in low Oz concentration
conditions (hypoxia) fueling their growth, resistance to conventional therapies and
therefore their aggressiveness. However, due to technological issues, the Oz level within
in vitro cell culture experiments is rarely considered and mechanisms regulating
differences in Oz levels between cancer cells and normal cells are yet to be fully unraveled.

A tripartite collaboration including a team at IFS, ILM and CRCL is ready to tackle
the challenge of examining how oxygen (Oz2) concentration influence CSC plasticity and
their response to anti-cancer therapies.

Using a novel integrative approach that couple innovative ex vivo spheroid and
organoid culture system as well as cutting edge Oz diffusion technologies, the outcomes
of this work could lead to the development of translational research. On the one hand,
this project will help understand how Oz could impact cancer cell plasticity (CSCs
properties), and therefore improve efficacy of conventional chemotherapy. On the other
hand, this project could also contribute to enhance human disease modeling paving the
way for more pertinent drug screening in combination with Oz therapy.

To strengthen our collaboration, Dr N. Aznar stayed in Japan for 13 days (Nov. 3-
16, 2023) to perform experiments related to this project. Moreover, the project secured
funding for a two-year period starting in 2024 from the French ShapeMed program,
overseen by University Claude Bernard Lyon 1. This funding encompasses the
recruitment of a French engineer and the execution of experiments aimed at advancing
the project's development.
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2. Details of program implement
Specific aim 1: Generation of microfluidic device compatible with 3D organoid cultures.
Dr K. Funamoto located at IFS and Dr Rieu Jean-Paul located at ILM are both
leading expert in oxygen tension gradient modeling in cancer as well as microfluidic tool
development. Dr N. Aznar located at Cancer Research Center of Lyon has developed a
strong background in colorectal cancer patient derived-organoid culture as well as a new
3D cell culture technology (patent pending) to study CSC plasticity. Therefore, the first
part of this project is focused in combining all collaborators ‘expertise to develop a
cutting-edge technology allowing to modulate Oz tension in 3D cell culture using
spheroids from cancer cell lines as well as colorectal cancer patient derived-organoids.
During Dr K. Funamoto’s research stay in Lyon for one month (June-July 2023) as a
CNRS invited researcher, we had several in person meeting between all project members
to discuss the device structure more in detail. Experiments will be performed in order to
validate the biocompatibility of the device with 3D cultures as well as the impact of Oz
(hypoxia vs normoxia) on (1) their self-renewal capacity (colony forming efficiency), (2)
their differentiation potential and (3) their stemness properties through analysis of
specific SC vs differentiation markers (by Immunofluorescence, Immunoblot and RT-
qPCR analysis).

Specific aim 2: Proof of concept on the impact of Oz modulation on therapeutic drug
response and resistance in Colorectal cancer patient-derived organoids (PDOs).

Previous studies have shown strong connections between Oz and cancer. However,
underlying mechanisms are still to be understood. To test if modulating Oz concentration
in the tumor microenvironment could be a good strategy to improve conventional
therapeutic drugs’ efficiency, experiments using CRC PDOs culture experiments were
performed in normoxia vs hypoxia using two different cell incubators, one in 21% Oz and
a second in 1% Og. First, CRC PDOs were incubated with a biotracker in order to confirm
hypoxic conditions (Figure 1). Next, CRC PDOs were treated with drugs routinely used
to treat CRC patients (5-Fluorouracil and Oxaliplatin) (Figures 2 and 3). Cell toxicity
and surviving cells were monitored by microscopy by CellTox green and propidium iodide,
respectively. Preliminary data show already promising results in that CRC PDOs
cultivated in hypoxia grow slower and are more resistant to conventional therapy (5FU
and Oxaliplatin) compared to normoxia conditions.

Brightfield

Hypoxia Biotracker.

Figure 1: Detection and assessment of
hypoxic conditions in CRC patient-derived
organoids (PDOs). CRC PDOs were cultivated
either in normoxia (21% O2) vsin hypoxia (1%
02 for 15 days and then incubated with
Biotracker 520 Green Hypoxia dye
(Millipore).

Normoxia
21% 0,

Hypoxia
1% O,
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Hypoxia (1% O,)

S5FU Control

Oxaliplatin,

Figure 2: Impact of O2 concentration on CRC Patient-derived organoids
(PDOs) and therapeutic response. (A) CRC PDOs were cultivated either in
normoxia (21% O2) vs in hypoxia (1% O2) for 15 days and then treated with
5FU or Oxaliplatin. Cell toxicity assays were performed using CellTox green
technology from Promega.

Normoxia (21% O,) Hypoxia (1% O,)
_Brightfield Brightfield Pl
Ll ot 4

Figure 3: Low oxygen concentration reduces PDOs cell death. PDOs
were cultivated either in normoxia (21% O32) vs in hypoxia (1% O2)
for 15 days. Dead cells were monitored by microscope using

3. Achievements

+  Optimization of CRC patient-derived organoid (PDO) cultures from fresh tumors.
*  Hypoxic condition decreases CRC PDO growth.

*  Hypoxic condition confers resistance of CRC PDO to drugs.

*  We designed an innovative 3D cell culture system combined with oxygen gradient.

4. Summaries and future plans

Using a novel integrative approach that couple innovative ex vivo organoid culture
system as well as a new organoid-on-chip platform compatible with O2 space and time
control and fluorescence microscopy, the outcomes of this work could lead to the
development of translational research, in line with the “bench to bed” policy of the
adjoined iLM and CLB/CRCL. Therefore, by improving ex vivo tumor organoid culture
conditions, this project may not only have an impact in basic research but could also
contribute to enhance human disease modeling. This project will decipher the
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unexpected role of Oz pressure on CSC plasticity (determination vs de-differentiation),
identify potential therapeutic targets and evaluate whether strategies aiming at
modulating O:z level could induce a “forced differentiation” in order to dampen CSC
plasticity. By promoting CSC differentiation, the final aim of this project will be to
sensitize them to conventional therapies and consequently opening a new avenue to
eradicate them, thus identifying new alternatives for drug sensitivity that will pave the
way for stratified chemotherapy.

. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] S. Aratake, Z. Su, J.-P. Rieu, K. Funamoto, N. Aznar: Investigation of a Predictive

Therapeutic Response under Controlled Oxygen Condition in Cancer Patient-

derived Organoids, Proceedings of the 20th International Conference on Flow
Dynamics (ICFD2023), (2023), pp. 1336-1337.

3) Patent, award, press release etc.
(Patent)
Not applicable

(Award)
Not applicable

(Press release)
Not applicable
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Project code J23Ly04

Classification LyC Collaborative Research Project
Subject area Environment and energy

Research period | April 2023 ~ March 2024

Project status 1st year (progressing)

Experimental Study of New Model Electroactive Materials (TEmPuRA)

G. Coativy!f, V. Perrinl, L. Seveyrat!, F. Dalmas?, S. Livi3, H. Takana45tt, JY Cavaillé+5.6

ILGEF, INSA Lyon, 2MATEIS, INSA Lyon, 3IMP, INSA , 4Tohoku University Lyon Center
Lyon 5Institute of Fluid Science, Tohoku University, SELyTMaX IRL
TApplicant, +1IFS responsible member

1. Purpose of the project

The objective of the project is to study the effect of the presence of ions on the electro-
actuation of dielectric elastomers. These ions may be 1) unintentionally present in
polymeric materials (impurities) or 2) incorporated in a controlled manner (doped
materials). In this project, we first worked on industrial polyurethane which contains
1onic impurities. Our results suggest that under electric field positive and negative ionic
impurities drift towards the electrodes with different kinetics. Their accumulation near
the electrodes is responsible for the complex bending kinetics of the polyurethane which
takes place over 15 hours. Then we synthesized polymer doped with controlled amount
of ionic liquids and study their structure, physical properties, and electro-mechanical
behavior to improve our understanding of the role of charge carriers in the electro-
actuation of dielectric elastomers.

2. Details of program implement

We have developed and characterized model epoxy-amine networks doped with
controlled amounts of ionic liquids (BMIM-TFSI) with a weight fraction varying between
0.1 and 10%wt to study the impact of electric charge carriers on the electroactuation of
elastomers. Our materials were studied electrically (dielectric spectroscopy and bending

under constant electric field), mechanically (mechanical spectroscopy) and structurally
(EDX, WAXS).

3. Achievements

Our results showed that the addition of ionic liquids: 1) does not affect the thermo-
mechanical relaxations and 2) increases the electric conductivity by 2 decades for only
0.1%wt and by 4 decades by adding 10%wt of IL. We also show that ion mobility is
constant whatever the IL concentration. This data can now be used for modeling our
systems.

Bending tests which consist in following the displacement of the free end of a film
suspended on the top (Figurel.a) under constant applied electric field showed that the
matrix without IL does not bend, whereas the presence of only 0.1%wt of IL was
sufficient to induce significant bending. More strikingly after removing the applied
electric field, a remanent displacement is observed over days (Figurel.b). This
unexpected phenomenon is now intensively investigated to understand its origin. We
showed that it is due to the presence of an anionic rich phase close to the positive
electrode long after the removal of the applied electric field. Our results were presented
at the 20th ICFD conference in Sendai. The authors would like to thank the LyC for its
financial support for the round trip (France-Japan).
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Figure.l a) Experimental setup of the bending test under electric field b) displacement as a function of time, under
E=IMV/m no displacement is observed for the pure epoxy-amine and a displacement is observed for epoxy-amine
doped with ionic liquid even after removal of the applied electric field.

4. Summaries and future plans
To sum up:
e Epoxy-amine materials doped with controlled amount of ionic liquid (IL) have
been synthesized.
e The addition of 0.1 wt.% of IL is sufficient to induce bending under a constant
electric field of 0.1 MV/m and to improve significantly the conductivity.
e Physical parameters such as ion mobility have been successfully extracted from
our experience and can be used to model our systems and simulate their behavior.
e After removal of the applied electric field, a remanent displacement is observed.
This has been shown to be caused by the presence of an organized layer of ions
near the positive electrode long after the electric field has been removed.

We will be submitting a first paper in May on the impact of the weight fraction of IL on
the electroaction of epoxy-amine/IL. We also hope to submit a second paper on the
identification and understanding of the remanent displacement observed when the
electric field is suppressed.

Now we are processing epoxy-amine networks doped with other ionic liquids and plan to
process ionopolymer (i.e. with cations grafted onto the polymer backbone) to evaluate the
impact of the nature of ions on the electro-mechanical response of our materials. In
addition, the use of other ionic liquids will allow IL cations and anions to be mapped by
EDX after the applied electric field has been removed.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] Axel Blain, Gildas Coativy, Florent Dalmas, Sébastien Livi, Gabriel Perli, Véronique
Perrin, Laurence Seveyrat, Gildas Diguet, Jo€l Courbon, Hidemasa Takana, Jean-
Yves Cavaillé, Study of the Electroactuation of Doped Epoxy-amine Elastomers with
Tonic Liquids under High Electric Fields, Twentieth International Conference on
Flow Dynamics (ICFD2023), Sendai, (2023).
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[2] Gildas Coativy, Gildas Diguet, Laurence Seveyrat, Véronique Perrin, Florent Dalmas,
Sebastien Livi, Hidemasa Takana, Joél Courbon, Jean-Yves Cavaillé, TEmPuRA

project: Toward understanding of bending behavior of electro-responsive polymers,
ElytWorkshop, 2024.

3) Patent, award, press release etc.
Not applicable
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Project code J23Ly06

Classification LyC Collaborative Research Project
Subject area Health, Welfare and Medical Care
Research period | April 2023 - March 2024

Project status 2nd year

Monitoring Eukaryotic Cell Functions under Various Hypoxic Conditions
with Microfluidic Differential Oxygenators

Jean-Paul Rieu*, Christophe Anjard*, Julie Hesnard*, Nasser Ghazi*
Satomi Hirose**, Kenichi Funamoto***}+
*The Institute of Light and Matter, Claude Bernard University Lyon 1
**Department of Mechanical Engineering, Massachusetts Institute of Technology
***Institute of Fluid Science, Tohoku University
TApplicant, T1IFS responsible member

Purpose of the project

This new project aims to develop new PDMS-based oxygenator devices for cells
based on a control of oxygen (O2) permeation trough PDMS. Cell proliferation,
adhesion and migration of the amoeba Dictyostelium and of HL-60 cells (both are
immune cell models) are investigated using these new as well as previously
developed devices.

It is well known that cells sense Oz tension and change their behaviors. Two
quick, almost instantaneous responses are aerotaxis and aerokinesis: cells can move
along Oz gradients (aerotaxis) or just be stimulated (or inhibited) by changing the
overall Oz level in the microenvironment in the absence of gradient (aerokinesis).
Our recent LyC project 2019-2022 (“Microfluidic Tools to Study Aerotaxis in
Eukaryotic Cells”) investigated these responses with Dictyostelium. In particular,
we developed a double-layer microfluidic device with gas channels and media
channels to generate O: gradients during cell culture, and we showed that
Dictyostelium amoebae are responding to Oz gradients in the 0-1.5% Oz range
(Cochet-Escartin, Funamoto, Rieu et al. eLife 2021).

To clarify the underlying molecular mechanisms, experimental devices need to
be improved in order to perform more experimental conditions in parallel and to
control separately the absolute value Cof Oz concentration and the spatial gradient
grad C. This is the first purpose of this project. Because, long exposure to hypoxia is
probably modifying metabolism, gene expression, and in turn, proliferation, motility
and cell-cell adhesion. The second purpose is to study these modifications. Finally,
different cellular models have to be well explored and compared in order to better
understand the mechanisms of aerotaxis.

Details of program implement

During year 2022 and early 2023, we performed experiments with various
Dictyostelium mutants or pharmacological substances affecting cell metabolism and
the Oz-sensing abilities of cells separately in Sendai and Lyon. In Sendai, S. Hirose
(PhD student of K. Funamoto) performed aerotaxis experiments with devices.
Meantime, in Lyon, J. Hesnard (PhD student of C. Anjard), performed cellular O
consumption and cell proliferation experiments. N. Ghazi (PhD student of J.-P.
Rieu) performed numerical simulations of the aerotactic behaviors. An article on the
role of oxidative stress and some metabolic functions on the aerotaxis of
Dictyostelium was submitted to Frontiers in Cell and Developmental Biology in
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December 2022 and accepted in march 2023.

N. Ghazi performed as well aerotaxis experiments (as well as their modeling)

with Acanthamoeba castellani (another asocial amoeba exhibiting strong aerotaxis).
He presented his results to ICFD 2023.

We continued the development of new PDMS-based oxygenator devices for cells

where the Oz concentration C solubilized in the culture medium is controlled by the
gas permeation through the porous PDMS and the external gas atmosphere. K.
Funamoto visited Lyon for one month in June-July 2023 (CNRS invited researcher
position) to work on that device. To validate the Oz level calibration, N. Ghazi visited
Japan after ICFD 2023 with the Oz sensor of Liyon team.

[mol/m3]
0.35
Z
&/ 36 mm long main channel
0

Figure 1: New PDMS-based oxygenator devices where oxygen level is controlled by gas
permeation through the porous PDMS. Left: Four-chamber devices; Right: Y junction

between a degassed and gasified liquid.

3. Achievements

The achievements by our collaborative research are summarized as follows.

We designed and developed new PDMS-based oxygenator devices for cells where
the Oz concentration C'solubilized in the culture medium is controlled by the gas
permeation through the porous PDMS and the external gas atmosphere. An
analytical formula was derived for Cas a function of PDMS thickness, flow rate,
channel dimensions. This formula was simulated using the multiphysics
software COMSOL. A four-chamber device where Oz level is divided by two
between every consecutive chamber based on this permeation principle was
fabricated at IFS (Fig. 1 Left) and tested with the Oq2-sensing films developed
during the former project between the two laboratories (Cochet-Escartin et al.
2021). The same O2z-sensing films was used to measure the Oz level in a
microfluidic platform for the reproduction of hypoxic vascular microenvironment
(domestic project of K. Funamoto)

A Y-junction device merging two fluids with different oxygenation level was as
well developed (Fig. 1 Right). It generates a step gradient along the direction
perpendicular to the long channel axis in order to investigate cell behaviors
under steeper O2 gradients than those generated by the double-layer
microfluidic device developed during former project (Cochet-Escartin et al.
2021).

We have shown that Dictyostelium cells enhances their cell migration under a
low O2 concentration (aerokinesis) and migrate toward an O2-rich regions under
the 0-2% Oz only (aerotaxis) and that reactive oxygen species or mitochondria
are not involved in aerotaxis.

We have shown that Acanthamoeba castellani, an asocial amoeba, respond to Oz
gradients in 0-2% Oz range as well.
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4. Summaries and future plans

We plan to continue the development of the four-chamber device with
controlled Oz levels in each chamber. It took more time than expected to validate the
simulated Oz levels in the chamber because the sensing film based on the quenched
fluorescence of porphyrin by Oz and included on the bottom surface had a significant
impact on the Oz level itself. We had to reduce its thickness and improve its
homogeneity to get results comparable to simulations. We need to repeat and finish
the analysis of those validation experiments. We need to repeat growth experiments
in the four chambers with Dictyostelium and cancer cells. For cancer cells, a few
problems associated with the apparition of bubbles at long times have to be solved
as the experiments has to be carried out at 37°C during several division times
(= several days).

Aerotactic experiments with Acanthamoeba castellani are very promising and
need to be analyzed, modeled and reported for a publication by N. Ghazi. He will
defend his PhD in December 2024 in Lyon.

. Research results
1) Journal (included international conference with peer review and tutorial paper)

Rieu, C. Anjard, K. Funamoto: The Aerotaxis of Dictyostelium Discoideum s
Independent of Mitochondria, Nitric Oxide and Oxidative Stress, Frontiers in Cell
and Developmental Biology, 11 (2023) 1134011, doi: 10.3389/fcell.2023.1134011.

[2] N. Takahashi, D. Yoshino, R. Sugahara, S. Hirose, K. Sone, J.-P. Rieu, K.
Funamoto: Microfluidic Platform for the Reproduction of Hypoxic Vascular
Microenvironments, Scientific Reports, 13 (2023) 5428, doi:
10.1038/541598-023-32334-9.

2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[3] N. Ghazi, M. Demircigil, S. Hirose, A. Chauviat, V. Calvez, K. Funamoto, C. Anjard,
J.-P. Rieu: Hypoxia Triggers Collective Aerotactic Spreading of Eukaryotic Cells,
Proceedings of the 20th International Conference on Flow Dynamics (ICFD2023),
(2023), pp. 1338-1339.

[4] N. Ghazi, M. Demircigil, S. Hirose, A. Chauviat, V. Calvez, K. Funamoto, C. Anjard,
J.-P. Rieu: Hypoxia Triggers Collective Aerotactic Spreading of Eukaryotic Cells,
GDR AQV 2023, (2023).

3) Patent, award, press release etc.
(Patent)
Not applicable

(Award)
Not applicable

(Press release)
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Project status 1st year

Numerical Study on Electrical Drift and Diffusion of Ions in Polymer Strips

Joél Courbon*¥, Hidemasa Takana**}+
*INSA Lyon
**Institute of Fluid Science, Tohoku University
TApplicant, T1IFS responsible member

1. Purpose of the project

When submitted to a high electric field £, a neutral polymer strip containing anions and
cations bends in a few minutes, then reverts to its original zero curvature in a few hours.
This behavior is reversible. It was studied experimentally in the 2000s notably by Pr.
Hirai (Shinshu Univ.). In order to try and manufacture electro-mechanical sensors
INSA launched an interdisciplinary research project (called Tempura, led by Dr.
Coativy) working first on polyurethane dipped in salt water, then manufacturing
polymer materials filled with ionic liquid for a better control of the ion concentration. A
first crude particle model running on Comsol, based on large differences in anion and
cation mobility, provide that it was not necessary to add charge injection to account for
the behavior. Yet the ions drift model was crude and lacked the role of diffusion.

Pr. Takana then proposed us to use his own drift diffusion model developed in his lab at
IFS (H. Mikami Master Thesis, 2016) in order to improve the modelling. I visited his lab
on sabbatical leave from INSA and we were glad to obtain the funding of the current
project. The goals were : 1/ to adapt electric double layer (EDL) code developed at IFS to
higher voltage, slower kinetics and possibly lower ion concentrations. 2/ Match
quantitatively the kinetics of quick anion and slow cation through the polymer strip
thickness (about 100 pm) under DC voltage below 1000 V. 3/ Interface with mechanical
model of bending developed at INSA.

2. Details of program implement

The applicant stayed at Pr. Takana,’s lab at IFS April-July 2023, working on the
Fortran code EDL. Since our polymer strip was thicker than the capacitor, a 5000-point
mesh with high point resolution close to the electrodes had to be generated using IFS
supercalculator, after unsuccessful trials to design the finite difference mesh manually.
As a matter of fact, plenty of nodes are needed close to the interface, where the field and
concentration gradients are large, and almost none in the center of the strip that
remains neutral ; in between, a smooth transition is critical.

It worked well : the code proved robust and capable to simulate the ions segregation
leading to bending. It was used as a very valuable input for the mechanical bending
code running with Comsol at INSA and the preliminary results [1] showed a better fit of
the experimental kinetics than using the previous model.

Our 1D model meets a physical limit at the electrode / polymer interface since there is
no electrochemical reaction at the electrodes - the electrons inside the gold plating and
the ions on the polymer side remain separated by an unknown distance d and the
electric field E between them surely 1s extremely high. However, at that scale, the gold /
polymer interface is not flat, meaning that our 1D E(x) approach does not capture the
local field E(x,y;z) but brings an average in the width y and length z directions, mixing
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Ionic and electronic charges, thereby softening the discontinuity. The same holds true
for the ionic concentrations close to the interface. Our model sets a maximum value Cmax
that is also an average over the whole strip surface, certainly much lower than local
values.

However, a bug was discovered in the mechanical model run at INSA, leading to
exaggerated bending amplitude. Therefore, new simulations at much lower ion
concentrations were started when I turned back to INSA, on the EDL code now running
on the computer stations of IFS Lyon center. While they brought the right order of
magnitude for bending, the current density was way too low when compared with
experiment. The dilemma was presented as a work in progress at the 20th ICFD
conference [2].

Nevertheless, we obtained working conditions for very high bending amplitudes on low
elastic modulus polyurethane, which gives the idea to test experimentally them on
much stiffer materials, which could then reach reasonable bending.

Furthermore, the use of very low initial concentrations enabled to detect a problem with
the boundary conditions that were used : they did not respect ion conservation, thereby
inducing a higher flow of ions towards the electrodes. The recent correction (February)
of the boundary conditions now enables ion accumulation ahead of the electrodes,
thereby building a counter electric field that brings the current density to decrease
much more than previously [3].

500 T T T T

T T T |
'16red06000000.dat’ using 2:3 =—
'16red04000000.dat’ using 2:3 —<=—
'16red02000000.dat’ using 2:3 ]

-100 7

-200 - -

-300 7

-400 |- B

500 | | | | | | | | |
0 1x10°  2x10°  3x10°  4x10°  5x10°  6x10°  7x10°  8x10°  9x10°  0.0001

Figure 1: typical electric potential (vertical axis, unit Volt) profiles vs position in strip
(horizontal axis, unit meter) at various times after application of the voltage (blue line
200 s, green line 400 s, purple line 600 s). The accumulation of ions in front of both
electrodes reduces the electric field in the neutral bulk (linear profile, constant electric
field). The figures are asymmetric left-right due to the anion / cation mobility difference.
For longer times (especially for low Cmax, the charged zones can become wider, up to a
few micrometers), and of course the electric field in the bulk much lower.
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3. Achievements

The EDL code adaptation now runs well under monotonic conditions and captures
the same features as the Comsol model run at INSA. Surprisingly, the effect of the
maximum concentration Cmax on the bending amplitude is low. But this may change
when testing voltage drops or voltage reversals, since a thick saturated layer (low
Cmax, wide charged zone ahead of electrode) is expected to react slower to a voltage
drop than a thin layer (high Cmax, narrow charged zone ahead of electrode).
Comparison with experiment may help discriminate among the currently rather
wide choice of Cmax values. The potential field of applications is large, since
experiments made on tailored polymers filled with ionic liquids at INSA (Tempura
project) will provide a huge experimental database for model applications.

On the other hand, the application form refered to a tentative application to the
modeling of the sintering process of ionic ceramic powders. It will not take place,
since a colleague at INSA already started the job.

4. Summaries and future plans
(as stated on 2nd year submission file)
Write and submit a paper on the new modelling approach with the other persons
involved in the Tempura project (notably JY Cavaillé, ElytMax Lyon Center senior
scientist, principal person in charge of Comsol modeling, and G. Coativy, managing
the chemical, electrical and material science skills of the 3 labs involved at INSA).
Apply EDL code to voltage drop and voltage reversal cases, then try and grasp the
behavior of the tailored polymers filled with ionic liquids.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable (the goal is to write a paper in Spring 2024 as explained above)

2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[1] J. Courbon, H. Takana : Numerical Study on Electrical Drift and Diffusion of Ions
in Polymer Strips, Japanese Society of FElectric Engineers regional meeting,
Morioka, July 27 (2023).

[2] J. Courbon, H. Takana, J.-Y. Cavaillé, G. Coativy, G. Diguet, Numerical Study on
Electrical Drift and Diffusion of Ions in Polymer Strips, 20th International
Conference on Flow Dynamics, Sendai, (2023), pp. 1318-1319.

[3] H. Takana, J.Y. Cavaillé, Toward understanding of bending behavior of
electro-responsive polymer, ELyT workshop, Kaminoyama (2024).

3) Patent, Award, press release etc.
Not applicable
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Mass Transfer Enhancement and Control by using Ultrasound Induced Flow
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*Institute of Fluid Science, Tohoku University
**LMFA, INSA Lyon, Université de Lyon
***Department of Mechanical Engineering, Tohoku University
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Purpose of the project

This study focuses on the active control of protein mass diffusion by using
membranes and localized flow induced by ultrasound. We experimentally and
numerically evaluate how ultrasound-induced flow in the liquid phase affects the
mass transport free diffusion field. The ability of ultrasound-induced flow to control
temporally constant mass flux conditions is evaluated by transient concentration
field in the vicinity of the macro-pore membrane. A series of visualization experiment
of hindered diffusion concentration field is performed, and the effect of localized flow
1s discussed. Since this is the first year of the study, experimental conditions were
examined with the aid of numerical simulations.

Details of program implement

Since this is the first year of the project, an overview of the study is given here
and the status of its preparation is reported. The final objective of this study is to
produce low-mosaicity crystals by making the uniform concentration field around
the seed crystal during crystal growth process. The conceptual schematic is shown
in Fig.1. The Japanese side will provide the optical devices for observing the
concentration field in tiny area in the vicinity of seed crystal surface, and the French
side will provide a micro-sized ultrasonic inducer to conduct the observation
experiment described in the purpose of the project. The principal investigator has
regularly collaborated with the French team to discuss the possibility of enhancing
and controlling mass transfer using the ultrasound-induced flow on the free
diffusion field. To demonstrate this experimentally, we fabricated and implemented
a specific experimental apparatus and performed the experiment. Also we studied
cell design through numerical simulation in this year. In the wvisualization

Cooling plate
saturated solution uniform conc. field
concentration and stable Supply concentration
natural convection(NC) pus Usy, local mixing NC suppression e
“B-B sy “p-B
) 4 Cer suppression AA_pore membrane
contour line ‘___ P
B’ location aleiEa \ 1}- .0- -0' ; }'B’l location
» . “sfllocal control of
seed p—" B" N seed crystal l” concentration field
: LYA ?} A Yy
(a) previous crystallization (b) proposed crystallization

Figure 1 : Concept of this project
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experiment, several kinds of proteins were used as samples, and it was
experimentally clarified how much difference in mass flux is caused by different
conditions in the bulk region for

proteins permeating a macro-pore 355108

membrane with a specific function as

shown in Fig. 2. As clearly the figure = 30x10° ]

shows, the amount of permeated & 1+ | )

protein  molecules vary greatly £ 25x10° .}
depending on the diameter and pore £ ] 1

arrangement of the membrane, and the X 20x10° 2 I % i ‘} L

. . = 'y

time-dependent reduction of mass flux - I

was also observed. On the other hand, S 15x10° *

. . =
based on the relationship between the
. . R 5

specifications of ~ the macro-pore 10x10™ =500 2000 3000 4000 5000 6000 7000
membrane and the mass flux obtained Elapsed time [s]

from the experiments, the location of  Figure 2 : Time variations of mass flux at
the ultrasound-induced local flow was 0.5mm above the membrane surface

also investigated.

Achievements

At current status, the achievement level of this year could be evaluated at 90%.
We have two general presentations in international conferences. As mentioned
above, we are ready to start the visualization experiment of protein mass diffusion
applying small ultrasound-induced flow. Now, one PhD student is staying in INSA
Lyon for 1 year as double-degree student. The student will perform the experiment
and the possibility of mass flux will be discussed.

Summaries and future plans

This study focused on the experimental evaluation of hindered diffusion process of
protein. The results of experimental work revealed that the micropore patterning
affects hindered diffusion process even for a constant aperture ratio. This effect
might be discussed under the consideration of wall effect of pore membrane and the
interference of concentration fields between neighboring micro pores. As future work,
the authors will apply the ultrasound induced flow, namely acoustic streaming, and
control the local concentration profile in the vicinity of membrane. By changing the
concentration condition, the authors will measure the penetrated mass flux and
evaluate the hindered diffusion.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)

Not applicable

International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[1] V. Botton, N.E. Ghani, S. Miralles, D. Henry, H.B. Hadid, B. Ter-Ovanessian, S.
Marcelin: Flows driven by ultrasounds in liquids in a wall mass transfer
enhancement perspective, Proceedings of the 33rd International Symposium on
Transport Phenomena (ISTP-33), Kumamoto, (2023), 51.

[2] A. Komiya, V. Botton, S. Miralles and R. Zhu: Mass transfer enhancement and
control by using ultrasound induced flow, Proceedings of 20th International
Conference on Flow Dynamics (ICFD2023), Sendai, (2023), pp.1316-1317. 0S23-4.

3) Patent, award, press release etc.

(Patent) (Award) (Press release) Not applicable
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Multiscale Simulation of Carbon Electromigration in Iron

Takashi Tokumasu*¥, Patrice Chantrenne**+¥
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**Université de Lyon, France
tApplicant, ¥tNon-IFS responsible member

1. Purpose of the project

In recent years, the sintering method or the thermal treatment method using
electricity (thanks to renewable energy) have become attractive because they are able to
perform their process without producing greenhouse gases. For example, spark plasma
sintering, induction heating, etc. have been proposed so far. In these methods, it is shown
that the process time might be shorter than the traditional method (radiant heat or
convection). Thanks to direct Joule effect heating, the heating rate might be higher than
100 °C/s., which is 5 times faster than direct flame heating and 50 times faster than
radiation heating. So heating processes using direct Joule heating not only save
greenhouse gas but also increase the productivity and the energy efficiency. However,
during these processes, not only thermal diffusion but also electromigration occurs. This
latter phenomenon has a significant influence on the microstructural change during the
thermal treatment. In particular, this is the case for steels in which C is submitted to
electromigration. The final goal of this research project is to elucidate the relationship
between carbon diffusion under electric field and microstructure in Fe-C alloy. As a
starting point, the motion of C in iron under an electric field has been investigated in a
perfect crystal grain.

2. Details of program implement

In this study, the carbon diffusion under electric field in Fe-C alloy was analyzed to
obtain the fundamental knowledge necessary for the simulation of spark plasma
sintering or induction heating. The phenomenon was simulated by the molecular
dynamics (MD) simulation. In previous work, only one carbon atom was placed in a
perfect iron crystal. However, the statistical accuracy of the simulation for one carbon
atom 1is not good enough. So the drift velocity and diffusion coefficient were determined
with 64 carbon atoms were placed in the iron crystal. The analytic bond-order(ABO)
potentialll and the Lennard-Jones potential were induced to described the atomic
interactions. In addition, the parameters of the ABO potential are changed to introduce
the multiple carbon atoms. In order to validate the interatomic potentials used, the
energy barrier for carbon diffusion was calculated. After validation, the drift velocity of
carbon under the electric field was analyzed. These calculations were performed using
LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator).

3. Achievements

The energy barrier for C diffusion was calculated from the diffusion coefficient of
carbon and compared with the DFT results. The Arrhenius plot is shown in the Fig. 1.
The energy barrier was extracted from the exponent part in the exponential
approximation of the Arrhenius plot. The temperature level was set from 800 K ~ 1100
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K. Our result(0.288 eV) is lower than the DFT result(0.86 eV)[2l i.e. the interatomic
potential which is used leads to an overestimation of the diffusivity of carbon. From this
result, there is a possibility that the computational system does not correctly reproduce
the minimum energy path.

The drift velocity due to electromigration was calculated and compared to the
Nernst-Einstein relation. The Nernst-Einstein relation is expressed by the following

equation Bl v = %. Where v is the drift velocity, D is the diffusion coefficient, F is the
B

force acting, k is Boltzmann's constant, and T is the temperature.The electric field
intensity was set at 0.0015 V/ A ~0.009V/ A and applied to the x-axis only. The
temperature was set at 1100 K. The total simulation time was 10 ns. Two iron atoms
were fixed so that the drift velocity of the entire computational system did not occur
during the simulations. The carbon atoms were considered within a NVE ensemble. In
contrast, the Fe atoms were considered within a NVT ensemble to avoid the temperature
increase of the system. The relationship between the MD simulation and the Nernst-
Einstein relation is shown in the Fig. 2. From the result, it was found that the slope of
the drift velocity increases from the Nernst-Einstein relation, i.e., there is a possibility
that the diffusion coefficient of carbon has changed. There is a possibility that the carbon
accelerated by the electric field changes the iron structure. It is necessary to analyze the
iron structure surrounding the carbon

10
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« MD simulation
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Fig 1. Arrhenius plot Fig 2. Drift velocity

4. Summaries and future plans
First, the 64 carbon atoms were introduced into the computational system to improve
the statistical accuracy. The diffusivity was calculated to obtain the energy barriers. The
results showed that the energy barrier was underestimated. It is necessary to validate
the diffusion path of carbon. Second, the drift velocity due to electromigration was
calculated. From the result, there is a possibility that the diffusivity of carbon has
changed. The RDF calculation will be done to analyze the iron crystal structure.
[1] T. Q. Nguyen, K. Sato, Y. Shibutani, Computational Materials Science, vol. 150, pp. 510-516, 2018.
[2] D. E. Jiang and E. A. Carter, Phys. Rev. B - Condens. Matter Mater. Phys., vol. 67, no. 21, pp. 1-11,2003.
[3] M. Koiwa, H. Nakajima, Materials Science Series Diffusion in Materials Random Walks on a Lattice,
2009(in Japanese).

5. Research results

1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[1] Ryuta Onozuka, Takuya Mabuchi, Patrice Chantrenne, Takashi Tokumasu:
Molecular analysis for electromigration of carbon atoms in steel, 60t National Heat
Transfer Symposium of Japan 2023, Fukuoka, (2023).

[2] Ryuta Onozuka, Takuya Mabuchi, Patrice Chantrenne, Takashi Tokumasu: Atomic
Scale Investigation of the Electric Field Dependence of Carbon Diffusion in Fe, Proc.
20th ICFD, (2023), pp. 1344-1345.

3) Patent, award, press release etc.
Not applicable
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1. Purpose of the project

How to obtain a polymer coating by cold spray? Since the emergence of polymer coating
by cold spray, significant improvements have been made regarding the increase of the
deposition efficiency or the improvement of the interfacial adhesion strength. However,
these successes were achieved using “try and fail” experiments, and little is known about
the deposition mechanisms or the state in which the polymer particle should be before
spraying and/or impacting the substrate. This research aims to investigate the evolution
of the microstructural state of perfluoroalkoxy alkane (PFA) during cold spray. This
investigation led to assumptions that will be used to design new spray conditions for
successfully achieving polymer coatings.

2. Details of program implement

Perfluoroalkoxy alkane (PFA) is a semi-crystalline with excellent spray capabilities
when used as feedstock in the cold spray process. Its glass transition temperature is
around 353 K, and its melting temperature reaches 578 K. Thus, the polymer is in a
glassy state at room temperature. Adding nano-alumina particles to the polymer
feedstock or texturing the substrate surface to induce roughness leads to a considerable
increase in the powder deposition efficiency from a few percent to nearly 90%. While the
surface texturing induced mechanical interlocking with the substrate surface (see Figure
1), adding nano-alumina particles favorized particle interactions. High coating quality
1s, however, difficult to reproduce for other polymers even though the same spray
procedure is used. Thus, two important questions arise: (i) Why is the process working
so well for PFA? and (ii) What polymer’s physico-chemical parameters could influence
the deposition?

Based on different cold spray studies on various polymers, it has been observed that
polymers with a glass transition temperature well above room temperature and rather
long macromolecular chains are more likely to provide coating when used by the cold
spray process. The glassy state of the particle feedstock will more likely decrease the
amount of viscoelastic energy during the polymer deformation. In addition, the long
macromolecular chains help delay the effect of the temperature on the mechanical
behavior and melting of the powder.
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Figure 1: Evolution of the deposition efficiency of PFA on a metallic substrate as a
function of the ratio roughness/particle size.

Computational Fluid Dynamics (CFD) simulations were carried out using ANSYS/
FLUENT 19.0. The setup was designed according to the experiments performed by Sulen
et al. (2022) to investigate the particle thermomechanical behavior. Results have been
obtained under the spray conditions (0.5 MPa, 773 K) (see Figure 2). It appears that the
polymer particles reach their melting temperature during the flight. A remaining
question is: Can this temperature increase influence the particle microstructure,
considering that the particle flight time is 0.4 ms?
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Figure 2: Evolution of the PFA particle temperature during its flight under the spray
conditions (0.5 MPa, 773 K).

Raman spectra measurements performed on the coating and powder at different
temperatures show the apparition of several additional peaks when the powder is above
its glass transition temperature (see Figure 3). However, these peaks are absent in the
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Raman spectra of the coating. Thus, it can be assumed that even though the particle
temperature increases during its flight in the cold spray nozzle, the flight time is too
short to induce any microstructure modification (under the assumption of high molecular
weight). Thus, it can be assumed that the particles are in an intermediate state between
glassy and rubbery, where the viscoelastic energy of the material is minimal. Thus, upon
1impact, the particles can deform and remain on the substrate instead of rebounding.
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Figure 3: Raman spectra for the PFA powder at different temperatures and a cold spray
specimen obtained under the spray conditions (0.5 MPa, 773 K).

According to these results, extrapolation regarding the sprayability of other polymers
can be done assuming that the powder needs to be in a glassy when in the feedstock
(temperature of the feedstock powder below the Tg of the polymer) and reach its melting
point at the impact.

One interesting polymer for cold spray applications is Ultra-High Molecular Weight
PolyEthylene (UHMWPE), which exhibits remarkable properties in terms of wear,
corrosion, and impact resistance. However, it is difficult to process it mainly due to its
very long macromolecular chains and glass transition temperature well below room
temperature (163 K). In addition, its melting temperature is around 403 K. Cold spray
experiments performed by Ravi et al. (2015, 2016, 2018) successfully manufactured a
UHMWPE coating on a metallic substrate using a 240 mm-long nozzle, however with an
extremely low deposition efficiency (<1%).

Based on the previous assumptions, we design a new system to allow spraying
UHMWPE particles under the two conditions: (i) in the feedstock, the particles are in
their glassy state (temperature below 163 K), and (ii) at impact, the particles reach its
melting point. Thus, nitrogen gas is used to cool the feedstock particles and accelerate
the particles in the particle inlet, while air is used as the mainstream gas. For the
particle temperature to pass from 163 K to 403 K, two solutions are foreseen: (i)
increasing the nozzle length, however, a 1 m-long nozzle is unrealistic, or (ii) decreasing
the particle size. Based on the CFD simulations and according to the assumptions, the
optimal particle size for UHMWPE particles should be around 25 um instead of the 45-
63 um currently used (see Figure 4).
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Figure 4: Evolution of the UHMWPE particle temperature as a function of the particle
size under the spray conditions (0.4 MPa, 773 K) using a 240 mm long nozzle and
nitrogen gas in the particle inlet.

3. Achievements
According to this research, several parameters have been identified as primordial for
manufacturing polymer coating by cold spray process:

+  Substrate Roughness (should be in agreement with the particle size)

+  Feedstock powder below its glass transition temperature (glassy polymer)

*  Melting temperature of the particle before impact

* Increase of the interfacial strength due to the addition of Al2Os

4. Summaries and future plans

Identification of the evolution of the microstructure of PFA powder during the cold spray
process has been carried out, and assumptions have been drawn according to these
findings. Based on the results, it has been established that the substrate roughness and
addition of nano-alumina particles play an important role in the coating formation and
adhesion. However, they are not the only parameters to account for. It appears that the
thermal state of the powder in the feedstock and at the impact also plays an important
role in the coating formation by minimizing the viscoelastic energy of the powder and
maximizing the plastic deformation of the powder. Thus, it should appear that in the
feedstock, the polymer particles should be in their glass state (T<Tg) and reach their
melting point (without melting) just before the impact.

According to these results, we designed a new model for spraying UHMWPE whose glass
transition temperature is well below room temperature. Numerical results appear
promising and must be compared with experimental results to validate the assumptions.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
Not applicable

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
[1] C.A. Bernard, H. Takana, O. Lame, K. Ogawa, Which mechanisms govern polymer
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deposition by cold spray process?, International Conference on Flow Dynamics,
Sendai, (November 2023)

[2] C.A. Bernard, H. Takana, O. Lame, K. Ogawa, Quels mécanismes gouvernent la
déposition de poudre polymere au cours du procédé cold spray ?, Seminar INSA de
Lyon, Lyon, (December 2023)

3) Patent, award, press release etc.
(Patent) Not applicable

(Award) Not applicable

(Press release) Not applicable
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1. Purpose of the project

Hydrogen society is worldwide applicable to the fact that this energy concept is based on
a universal source of energy. In European countries, hydrogen as an energy vector is
designed at the gaseous or the hydride state. In other countries (such as Japan), the
ammonia is considered as a potential reservoir of hydrogen. Ammonia has the advantage
of a high hydrogen density, well-developed technology for synthesis, distribution, and
easy catalytic decomposition. Ammonia can be stored in different physical states: liquid,
gaseous, and solid state. Note that the energy cost to produce solid-state ammonia
counterbalances the product's advantages, reducing its interest today. The liquid
ammonia is obtained either at high pressure or by solubilization in water (aqueous
ammonia). The latter is one of the easiest storage conditions (lower energetic cost, safety,
etc.), but it has some limits. The higher the temperature, the lower the ammonia
solubility will be [1]. Also, aqueous ammonia cannot be used at the end: gaseous
ammonia is required as fuel in electricity power plants or engines for instance.

The benefits of greater versatility of ammonia in the energy chain get slightly blurred as
ammonia is incompatible with some metals. Valera et al. [2] proposed a metal
classification based on chemical compatibility. On the one hand, they report high
compatibility with aluminum or cast iron. On the other hand, poor compatibility for
copper and its alloys is displayed. Note that this compatibility chart does not consider
the infrastructure design: weld cast iron becomes sensitive to ammonia stress corrosion
cracking for instance [3]. One protective solution is to apply a polymer coating on metal.
As for metals, not all polymers are compatible with ammonia. Valera et al. [2] report
higher ammonia compatibility with epoxy than polyurethane for instance. If abundant
literature exists on epoxy-coated metals performances [4], results come mostly from
atmospheric or marine test conditions which are far from ammonia environments [5]. On
the other hand, the current commercial epoxy resins are made with bisphenol-A
prepolymer (BADGE) and an amine as a curing agent, which fall under the REACH
regulation. Beyond the case studied, new epoxy chemistries are required.

IMP research group reported recently new alternatives to conventional amine hardeners
based on ionic liquids (ILs), such as phosphonium ILs. IMP lab have demonstrated that
ILs combined with basic counter anions such as dicyanamide, phosphinate, or phosphate
anions offer the opportunity to design reactive systems having a tunable reactivity. Such
a route leads to new epoxy-IL networks displaying excellent thermomechanical
properties, including a high thermal stability under nitrogen (> 400-450 °C), and a glass
transition temperature from 80 and 170°C which can be tuned from the chemical nature
of the anions [6].
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This project aims to discuss the durability of either diamine or ionic liquid epoxy resin
in an ammonia environment. Polymer coupons were produced and immersed in ammonia
aqueous solution at 25 wt.%. The mass variation of the coupons was calculated after 1176
hours of exposition. A previous work (PhD L. Ollivier Lamarque) demonstrated that
these polymers are also sensitive to water uptake. Therefore, immersions were also
carried out in distilled water for comparison purposes.

2. Details of program implement

Polymer coupons were developed using a prepolymer (BADGE). Two ionic liquids, IL105
and IL103, were selected as cross-linking agents. Both have a phosphonium ion
associated with either an ino-acetate (IL103) or a dicyanamide ion (IL105). Two amines
were also used as cross-linking agents: D230 (polyether amine) and PACM. The latter is
a cycloaliphatic amine resulting in a glass transition temperature of the polymer higher
than that when using D230. The addition of a cross-linking agent is done under
stoichiometric conditions allowing cross-linking to >90% of the polymers without leaving
any free amine or liquids. This corresponds to approximately 10 phr for the ionic liquids
and 63 phr for the amines. The coupons are parallelepipeds (approximately 10mm x 5mm
x 1mm) whose size is compatible with DMA/DSC tests. The manufacturing parameters
are identical to those reported by L. Ollivier-Lamarque.

The initial characterization of the polymer coupons is carried out at IMP. This includes
DSC and DMA analyses. The glass transition temperatures determined by DSC are
reported in Table 1. If the resin based on D230 has the lowest glass transition
temperature, the other three resins have Tg above 100°. Furthermore, the measurement
of the contact angle in water shows an advantage of ionic liquids over the hydrophobicity
of the resin. Note that this characteristic is modified when it comes to organic media
(measurements in diiodomethane). Based on the available Tg data, two materials stand
out: IL105 and PACM.

Table 1. Initial characteristics of coupons (glass temperatures, contact angles)

Sample 11103 1L105 D230 PACM
Tg (°C) 131 150 90 170
Contact angle (°)

Water 93 105 85 -
diiodomethane 36 80 65 --

The coupons were then immersed in two solutions: the first being distilled water (serving
as a reference environment), the second being a 25% ammonia solution (aqueous solution
NH4OH). Water and/or ammonia uptake was monitored by tracking the mass evolution
of the samples. The immersion tests were conducted for 1176 hours at room temperature
(approximately 19°C). The coupons were immersed in 40 mL of solution in an aerated
and stagnant condition.

Whatever the solution a mass increase was monitored, indicating that the solution
penetrated the coupons (Figure 1). For a coupon, the uptake is almost similar in the two
solutions except for the IL105.

Figure 1a shows that the uptake is significantly lower for the ionic liquid epoxy coupons.
The mass variation between the D230 and PACM samples can be related to their glass
temperatures. Similar observations can be made with the ionic liquid group. For both
categories, an increase in uptake is linked to a higher glass temperature transition.
Considering the contact angles either in water or diiodomethane, an increase in contact
angle leads to an increase in mass variation (for IL103 and IL105 samples).
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Figure 1. Mass variation after immersion in 40mL solution at 19°C for 1176 hours plotted
as a function of initial a) glass temperature transition, the contact angles in b) water and
¢) dilodomethane.

3. Achievements

These first results demonstrate the potential of polymer materials for ammonia storage.
Ammonia (NH4OH form) does not seem to accelerate the water uptake in water solution.
These exposure tests also show that the curing agent has a strong effect on the level of
the uptake. Ionic liquids have less influence than the two others.

These results also highlight the complex mechanisms between the polymer material and
the solutions resulting in mass evolution. Indeed, the absolute glass transition
temperature and the contact angle are not direct descriptors used to predict uptake.

4. Summaries and future plans

Demonstration has been done that ammonia solubilized in water does not increase the
uptake of polymer. The results also show that new polymer generation (ionic liquid) has
strong potential as a coating to protect the structural integrity of metal infrastructure
regarding ammonia aggressiveness.

The next step is to quantify the uptake kinetic and expose these materials to a gaseous
environment. Work has also to be done on the modification of the glass temperature
transition, contact angle and also other thermomechanical parameters after ammonia
exposition.
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2)

3)

Research results

Journal (included international conference with peer review and tutorial paper)
Not applicable

International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)
Not applicable

Patent, award, press release etc.
Not applicable
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1. Purpose of the project

Subsonic jet noise, which is generated by jet engines, is called ‘the vortex sound’
because it is mainly caused by the nonlinear and unsteady motion of various scale
vortices. Thanks to the recent development of the computation technologies in fluid
dynamics, large-scale and highly accurate unsteady jet simulations have become possible.
Therefore, detailed aeroacoustics analysis data for subsonic jets have been obtained so
far. However, it is difficult to understand the huge and complex turbulence data without
the appropriate analysis methods. Based on the above, this study aims to (1) develop a
method for extracting flow structures related to noise generation using a mode
decomposition method, and (2) quantitatively explain the mechanism of jet noise
generation. These studies are expected to provide a clear guideline for future noise
reduction design of a jet engine.

2. Details of program implement

The investigation is structured around a collaboration between French and Japanese
leading turbulent flow research institutions with a shared interest in aeroacoustics in
the turbulent jet.

(a) Stp = 047 (b) Stp =1.1

(€)Stp=1.6 (d) No point source

Figure 1: The pressure and vortices visualization results of Navier-Stokes solver with artificial
disturbance; (a) Stp=0.47, (b) Stp=1.1, (c) Stp= 1.6 and (d) no point source case. The pressure
contour ranges from 0.99 to 1.01, from blue to green to red. The iso surfaces are that Q-criterion is
0.05, which is colored by grey.

The investigation will be performed both in France and Japan, and it will be divided
into two strands. The first is to perform large-scale numerical simulations of
aerodynamic noise using jet flow simulations that are accurate enough to resolve the
acoustic waves (performed in France by Dr. Bogey). The second is to try to extract the
structures related to noise generation from the numerical simulation data carried out by
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Dr. Bogey using data-driven methods such as mode decomposition (to be carried out in
Japan by Dr. Yakeno and Mr. Morita, the third-year doctoral student). These two
researches complement each other and are based on the expertise of each applicant: Dr.
Bogey, who belongs to the University of Lyon, has the know-how and facilities to perform
large-scale numerical simulations of jet streams. On the other hand, the Obayashi and
Yakeno research group at Tohoku University has been actively conducting research using
data science and fluid science and has strengths in flow structure extraction methods
such as mode decomposition techniques.

3. Achievements

One of our research objectives has been to quantitatively explain the mechanism of
jet noise. We found that a feedback loop phenomenon exists in high-speed subsonic jets.
A feedback loop is a phenomenon in which jet noise influences the initial instability of
the flow, and the characteristics of the jet noise are determined by the repetition of this
influence. In order to investigate the conditions under which this phenomenon occurs,
we developed a new analysis method using flow simulation. This method generates a
sound source that simulates jet noise in laminar jet flow and investigates the
"sensitivity" of jet turbulence to noise frequencies. The results show that the sound
waves in the three-dimensional jet are most sensitive to frequencies that match the
turbulent frequency of the initial instability observed in feedback loop phenomena. This
result supports the feedback loop phenomenon in jet noise. These results were presented
at ICFD2022 and iTi2023 (held in July) and would be published in the journal "Progress
in Turbulence X."

4. Summaries and future plans

Results of the two approaches (1st year; tlsDMD, 2nd year; sensitivity analysis)
suggest that the guided jet waves propagating on the jet axis are sound waves generated
at the end of the potential core, which cause K-H instability and turbulence in the jet. It
1s concluded that the feedback loop phenomena seen in supersonic and collisional jets
also occur in subsonic free jets. We are currently compiling and submitting two academic
papers regarding the results of each method. We have received a request for a minor
revision of one, and will be re-submitting the other too.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] Shota Morita, Aiko Yakeno, Christophe Bogey, Shigeru Obayashi: Flow Sensitivity
Analysis for the Feedback Loop Phenomenon of Subsonic Jet Noise Generation,
Progress in Turbulence X, accepted.
[2] Shota Morita, Aiko Yakeno, Christophe Bogey, Shigeru Obayashi: Modal Analysis of
High-Speed Subsonic Jet Noise: Visualization of an Internal Feedback Loop, Journal
of Flow and Energy, accepted.

2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[3] Shota Morita, Aiko Yakeno, Christophe Bogey, Shigeru Obayashi: Flow Sensitivity
Analysis for the Feedback loop phenomenon of subsonic jet noise generation,
Interdisciplinary Turbulence Initiative (iT7) 2023, Ttaly, (2023), No. 141.

[4] Shota Morita, Aiko Yakeno, Christophe Bogey, Shigeru Obayashi: Clarification of
Flow Structures Related to Jet Noise Generation Using Mode Analysis and High-
Precision Jet Flow Simulation, 7The 20th International Conference on Flow
Dynamics (ICFD2023), Sendai, (2023), 0S23-9.

3) Patent, award, press release etc.
Not applicable
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Tensile Effect by Wall Shear Stress around Stagnation Point and Flow Instability by
Wall Elasticity in Full-Scale Patient-Specific Aneurysm Model

Gaku Tanaka*¥, Ryuhei Yamaguchi**, Shuhei Sato*, Albadawi Muhamed***, Khalid M. Sqr****,
Atsushi Totsuka**, Hitomi Anzai**, and Makoto Ohta**§+
* Graduate School of Engineering, Chiba University
**Institute of Fluid Science, Tohoku University
*** Faculty of Engineering, Alexandria University
**+% Arab Academy for Science, Technology and Maritime Transport
TApplicant, TTIFS responsible member

1. Purpose of the project
In the present study, we measured the flow structure in middle cerebral aneurysm using PIV at orthogonal
multiplane. In particular, the effect of wall elasticity on gradient of wall shear stress (WSSG) and flow
instability in a patient-specific middle cerebral aneurysm using in vitro using PIV.

2. Details of program implement
The phantom was reproduced from an image-
based, patients-specific middle cerebral
aneurysm (Fig. 1). The current phantom model
was fabricated using a silicone elastomer

(Sylgard 184, Dow Chemical) using a specialized
technique via mold made from water-soluble
plaster. The velocity pattern was measured by
semi 3D-PIV using UV Laser (ie., CW ultra
violet Laser of wave length 375 nm with aneurysm Fig. 1 Morphology of middle cerebral.

0.8W). The working fluid is aqueous glycerol =

WHSG=2.9 Pa/mm

=
=
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potassium solution. WSS was estimated from the
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WSS [Pa)

WESG (for both)= 3,6 Pa/m)
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tangential velocity along aneurysm wall. The
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flow waveform is approximated in a simple [ - ] oy
. . . . . 20 15 W0 5 0 5 0 3.5 b s E
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mean Reynolds number of 350, mean flow rate

E

e WSSG— 3.9 IPa/mu

.M\\ $5G= 10 Paio

IWVESG— 4.2 le"‘xm

—&— Elaslic
—a— Rigid

of 170 ml/min and inlet vessel diameter of 2.8

WSSGT 4.9 Pujnm

WSS [Pa]

mm. Major purpose of this study was to

[~ Elaslic

determine the effects of elastic wall on WSS and [ | 1 L 15 ’*f‘gm i
150 5 BTSN - 5 I
. .y o7 e . . Distance fTom impinging 1 || istinee from impiging point [mm]
flow instability within a patient-specific cerebral e ey e poin )
aneurysm. Fig. 2 WSS and WSSG at four phases.
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Fig. 3 Comparison of TKE in rigid with elastic models at xy- and yz-planes.

3. Achievements
Firstly, the effect of elasticity on wall shear stress (WSS) and gradient of WSS (WSSG) is noticed in xy
and yz-planes as shown in Fig. 2. WSS and WSSG in elastic is smaller than those in rigid models. WSS
is influenced by the deformation of the aneurysm wall induced by the static pressure and the elasticity.
The WSS directly acts on the vascular lumen as a biological stimulator. The suppression of WSS and the
WSSG by elasticity implies a smaller stimulating force on the aneurysm wall. The flow instability was
experimentally clarified at orthogonal multiplane within aneurysm. In particular, there was a difference
in the TKE between the elastic and rigid models as shown in Fig. 3. The mean TKE in elastic model at
global points is smaller than that in rigid models. Also, the wall elasticity suppresses the turbulent kinetic
energy (TKE), i.e., in elastic more than that in rigid models. The generally smaller TKE in the elastic
model in comparison with the rigid model highlights the stabilizing effects of wall elasticity on fluid flow.

4. Summaries and future plans
We realized a thin-walled elastic phantom model of a full-scale patient-specific aneurysm at the apex of
the bifurcation of the MCA. The flow instability in elastic model was attenuated in comparison with in
rigid model. The stretching force WSSG acting on aneurysm wall was suppressed in elastic model.

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] R. Shimodoumae, G. Tanaka, R. Yamaguchi, and M. Ohta, Numerical Simulation of Flow Behavior in

Basilar Bifurcation Computed Tomography Angiography, Int J Numerical Method in Biomed Eng.,
2024, DOI: 10.1002/cnm.3805

2) International and domestic conferences, meeting, oral presentation etc. (included
international conference without peer review)

[2] S. Satoh, N. Ikeya, G. Tanaka, M. Ohta, R. Yamaguchi, T. Nakata, Effect of wall elasticity on flow
instability and wall shear stress in patient-specific cerebral aneurysm, 2023 JSME Annual Conference,
JO21p-1.

[3] G. Tanaka, R. Yamaguchi, S. Sato, A. Muhamed, M. Sqr Khalid, H. Anzai, M. Ohta: Hemodynamics
Effect of Wall Elasticity on Flow Dynamics within MCA Aneurysm, Proc. 23" International
Symposium on AFI-2023, Sendai,(2023),CRF-37,pp.111-112.

[4] S. Sato, G. Tanaka, M. Ohta, R. Yamaguchi, Effect of wall elasticity on wall shear stress of patient-
specific middle cerebral aneurysm, AP Biomech 2023, p.56.

3) Patent, award, press release etc.
Not applicable
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fill 2 AW T/ D3RRI X 0 RE LD OEI#R A X 4 1[ZHRCTRT. 74 v T 4 V71TV
% SNR DfEIZHIT HAPIZH L, MHERNDOFERIZEMEIC L T\ D. £72, SNR OfEH Y
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1. Purpose of the project

The objective of this project is to visualize the velocity and temperature profile of EHD
melting heat transfer enhancement in an organic PCM using Schlieren imagery. The
main advantages of Schlieren velocimetry over PIV are the non-intrusiveness of the
measurement from the lack of seeding particles and the ability to visualize transient
phenomena in the flow, especially with highspeed imagery. These unique features of
Schlieren imagery make it an excellent tool for the study of EHD heat transfer
enhancement phenomena. Through the usage of novel visualization methods, the project
aims to facilitate an improved understanding of EHD melting heat transfer
enhancement for numerical modeling and subsequent development of EHD thermal
batteries.

2. Details of program implement

In May 2023 preliminary testing was conducted on a new test-section that used stainless
steel electrodes (as opposed to the previous copper electrodes) as well as a new heat
transfer methodology. The previous year we had attempted to measure the signal of a
PWM into a heater maintained at a constant BC, but this was too difficult to analyze.
This year we used a PID controller implemented in LabView. The PID controller adjusts
the output for the heater to maintain the setpoint, and then LabView records the output
signal from the controller with respect to time. Other changes included the simultaneous
measurement of applied voltage and current with the velocity field (experimental setup
figure 1 and 2, flow visualization in figure 3).

In June the first formal experiments were conducted using the DSLR camera to visualize
the flow. In July we switched to high-speed imagery. All experiments simultaneously
measured heat transfer (through the PID controller), voltage and current (through an
oscilloscope) and flow field through schlieren (using either the DSLR or HS camera). It
should also be noted that the oscilloscope and HS camera were triggered together, so that
the current, applied voltage, and flow velocity field could be correlated together in time.

Early results showed that the new electrodes did not show charge injection like the
previous ones used in the collaboration in 2022. This shifted focus to investigating the
behavior of the disassociation mechanism under an alternating electric field.
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Simultaneous measurements of the flow visualization (Figure 3), current, and heat
transfer (Figure 4) were taken for a variety of applied voltages and waveforms.

e 4kV, 6kV, 8kV DC
e 8kV 0.06Hz to 0.2Hz

Insulation

Polyamide Heater

LabView
PID Control/Data Acquisition

I

T/C Lead

TDK Lambda Z+
Power Supply

100 MQ Resistor

— | NF HVA 4321
HV Power Supply

Wave Factory 1941
Waveform Generator

LeCroy Wave Surfer 434
Digital Oscilloscope

Trigger signal to HS camera

Figure 1: Experimental test facility schematic for simultaneous measurements of current
vs voltage, heat transfer and flow visualization using Schlieren visualization.

Oscilloscope

Trigger signal

Highspeed Camera

Knife Edge

Test Section

Figure 2: Schlieren visualization schematic
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3. Achievements

We were able to visualize flow driven purely by dissociation phenomena, and an ultra
low AC electric field (0.06Hz to 0.2Hz) and measure the associated heat transfer
enhancement.

Compared to the previous year where we had used strong charge injection the current
has dropped from ~100nA to ~4nA, but the flow velocities and heat transfer enhancment
are similar (20mm/s and 30% reduction in melt time).

These phenomena had previously not been visualized before, or effectively applied to
EHD melting heat transfer enhancment, and are therefore novel findings.

Figure 3: Schlieren visualization of jets for 0.06Hz- 8KV applied voltage left to right Os,
1.2s, 2.1s.

There were several key findings:

e Charge injection can be controlled strongly by the material properties.

e Dissociation mechanism is very effective for heat transfer enhancement if an
ultra-low frequency AC voltage is applied ~0.1Hz.

Application of AC frequency increased induced velocity from 4mm/s to 20mm/s.

e The “jet” phenomena we are seeing with dissociation is driven by an attractive
force towards the electrode, as opposed to the repulsive force seen in charge
injection.

e ~50 times lower power consumption for similar heat transfer enhancement when
comparing 8kV DC Charge injection in previous experiment to, 8kV 0.1Hz
dissociation.

e No noticeable degradation of the PCM — current vs voltage measurements were
consistent over 20hrs+ of testing.
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Figure 4: Time elapsed (s) vs Melt Fraction for different applied voltages.

Summaries and future plans

In the next collaboration we plan to investigate the surface finish effect on charge
injection. We were surprised how much less charge injection there was for the
smoother stainless-steel electrode compared to the copper, which had a rougher
surface finish.

Some challenges with the test section we still need to address:
e The heat loss was too great, which made heat transfer measurements
sensitive to room conditions (temperature, A/C)
e The test section broke down above 8kV because the electrode wires were
frayed, preventing higher applied voltages.

The findings from our first collaboration in 2022 and this year’s collaboration in 2023
will be summarized in 2 journal papers to be submitted in 2024. The first will detail
the Schlieren visualization methodology, and the second will investigate the physics
of the dissociation mechanism EHD that was visualized in the 2023 collaboration.

Moving forward, we would like to test and implement the idea of a “best waveform”
for heat transfer enhancement. It is possible that as the melt fraction increases the
ideal electric field frequency for maximum heat transfer changes. We would like to
verify if this is true, and if so, find the best duty cycle to maximize the rate of heat
transfer.
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5. Research results

1) Journal (included international conference with peer review and tutorial paper)
Not applicable.

2) International and domestic conferences, meetings, oral presentation etc.
[1] E. Chariandy, S. Liu, T. Sato, J. Cotton, “Schlieren Velocimetry of
Phase Change Material Heat Transfer Enhancement under the
Application of Electrohydrodynamics”, International Symposium on
New Plasma and FElectrical Discharge Application and on Dielectric
Materials 2023.

[2] E. Chariandy, S. Liu, T. Sato, J. Cotton, “Heat Transfer Enhancement of Phase
Change Material Under the Application of an Oscillating Electric field” Proceedings
of the 234 International Symposium of Advanced Fluid Information, Sendai,
(2023),CRF-31,pp.95-98.

3) Patent, award, press release etc
Not applicable.
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1.

Data Analysis of Thermo-Physical Properties of Organic Materials Using Machine
Learning Algorithms

Hari Krishna Chilukoti*}, Gota Kikugawa**+{+
*Department of Mechanical Engineering, National Institute of Technology Warangal
**Institute of Fluid Science, Tohoku University
TApplicant, T+IFS responsible member

Purpose of the project

Recently, a machine learning-based framework realizing high throughput screening
for the material exploitation and optimization has drawn much attention, and this
data-driven approach for material development is called materials informatics (MI).
The advantage of MI technology is that it can realize material discovery in cyberspace
using big data as opposed to the conventional trial-and-error material discovery using
high-cost experiments, and target materials can be discovered quickly. Recently, a
new paradigm, which is recognized as physics-guided machine learning (PGML), has
been proposed. PGML does not utilize only the data themselves, but also underlying
physical laws or physical interpretation of properties, and enables to improve model
accuracy of ML when small data sets are only available. In this context, clarifying the
physical mechanisms governing physical properties and understanding the
correlation between physics and data will accelerate performance of the PGML in
materials discovery and optimization of properties.

Details of program implement

To correlate the molecular structure with thermophysical properties, we have adopted

the following input parameters for describing linear and branched alkanes. These

parameters distinctly encode structure with nonnegative number, which are then fed

into different ML algorithms as inputs. The five parameters are as follows:

1. The number of carbon atoms in a molecule.

2. The smallest number of C-C bonds present between the one end of the carbon back
bone and its adjacent branch.

3. The number of C-C bonds present in the branch that is nearer to an end of the
longest carbon back bone.

4. The number of C-C bonds between the other furthest end of the backbone of the
molecule and its nearest branch.

5. The number of C-C bonds within the second branch.

For example, in the case of alkanes with a single branch, the third and fifth

parameters (3 and 5) will be zero, as there are no additional branches to consider.

Similarly, for a linear molecule all other values except first parameter become zero.

Achievements

We considered the molecular structural details of linear, single, and double-branched
alkanes as input parameters in the ML algorithms, represented by non-negative
numbers. To assess the predictive capabilities of various machine learning algorithms
in reproducing experimental thermophysical properties (kinematic viscosity, molar
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heat capacity, enthalpy, thermal conductivity, and speed of sound), we examined five
ML algorithms: random forest regression, decision tree regression, feedforward
neural network, multiple linear regression, polynomial regression models. 15 linear
and branched alkanes at different temperatures and pressures were examined.
Among these models, the random forest regression demonstrated superior
performance in reproducing the studied thermodynamic and transport properties
when compared to the other four models (Table 1). The RFR model achieved
impressive %AARD values of 0.056 %, 0.0768 %, 0.0122 %, 0.0022%, and 0.0353 %,
along with MAE values of 0.192 pPa-s, 0.0096 kdJ/mol, 0.0001 W/(m K), 0.0025
J/(mol K), and 0.7010 m/s for predicting the kinematic viscosity, enthalpy, thermal
conductivity, molar heat capacity, and speed of sound of alkanes, respectively.
Correlation matrix analysis analysis reveals that the thermal conductivity of alkanes
is majorly influenced by the number of carbon atoms in a molecule (Figure 1).

4. Summaries and future plans

We employed different machine learning algorithms to predict the thermophysical
properties of various alkanes and refrigerants at different temperatures and
pressures. As a next step, we will explore the feature selection and engineering for
better predictive capability. Furthermore, we will also explore optimization of target
properties with Bayesian framework

Table 1: Statistical parameters for predicting thermal conductivity (W/m.K) of
alkanes from various ML models

Statistical | pep | DTR | FNN | MLR | PR
parameter

R 1 0.999 | 0.660 | 0.616 | 0.722
%AARD | 0.0122 | 0.0422 | 40.49 | 46.21 | 13.48
MAE 0.0001 | 0.0002 | 0.225 | 0.190 | 0.038

parameter 1

1.0
-0.074 -0.074
parameter 2 - -0. .44 0.44 -0.065
parameter 3 - -0.17 -0.065
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Therm. Cond. (W/m*K) ﬂ -0.065 -0.065
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Figure 1: Correlation matrix heatmaps between various inputs variables and
thermal conductivity at constant temperature and pressure for alkanes

5. Research results
1) Journal (included international conference with peer review and tutorial paper)
[1] K. Rathod, S.C. Ravula, P.S.C. Kommireddi, R. Thangeda, G. Kikugawa, H.K.
Chilukoti: Predicting thermophysical properties of alkanes and refrigerants using
machine learning algorithms, Fluid Phase Equilibria, Vol. 587 (2024), 114016 (19
pages), doi: 10.1016/j.fluid.2023.114016.
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2) International and domestic conferences, meeting, oral presentation etc.
(included international conference without peer review)

[2] H.K. Chilukoti, Sota Suzuki, and G. Kikugawa: Data Analysis of Thermophysical
Properties of Organic Materials Using Machine Learning Algorithms, Proceedings
of the Twenty-third International Symposium on Advanced Fluid Information,
Sendai, (2023), CRF-13, pp. 49-50.

3) Patent, award, press release etc.
Not applicable
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