■目次 | はじめに | 1 | |--|---| | 理念とおいたち | | | 組織 | | | 組織図 | 5 | | 研究部門と研究センター | 6~8 | | 研究分野·教員一覧 | 9~10 | | ■流動創成研究部門 | | | 電磁機能流動研究分野 | 11~12 | | 融合計算医工学研究分野 | | | 生体流動ダイナミクス研究分野 | | | 航空宇宙流体工学研究分野 | | | 宇宙熱流体システム研究分野・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | | 自然構造デザイン研究分野・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | | | ■複雑流動研究部門 | 2. 22 | | - (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 | | | 先進流体機械システム研究分野 | | | 複雑衝撃波研究分野 | | | | | | ■ナノ流動研究部門 | 2930 | | テンプル 動物 1 分子熱流動研究分野 | 2122 | | サイス カース カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カー・カ | | | 生体ナノ反応流研究分野 | | | チャプクスルが切れが到 | | | カナ後日米川到州先ガジ
生体分子流動システム研究分野 | | | | 39~40 | | ■統合流動科学国際研究教育センターグリーンナノテクノロジー研究分野 | 41 - 40 | | クリーフナファクフロンー研究が野 | | | 高迷风心流術先力野
地殻環境エネルギー研究分野 | | | 地 放 | | | エネルキー | | | | | | マルチフィジックスデザイン研究分野 | | | 反応性流動システム研究分野 | | | 次世代電池ナノ流動制御研究分野・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 55~56 | | ■リヨンセンター(材料·流体科学融合拠点) | F7 F0 | | 流動・材料システム評価研究分野 | | | 統合流動科学国際研究教育センター | | | リヨンセンター | • | | 未来流体情報創造センター(AFI) | | | 次世代流動実験研究センター(AFX) | 63~64 | | 航空機計算科学センター(ACS)、 | | | H ×東北大学アンモニアバリューチェーン共創研究所 | | | 技術室 | 66 | | 活動 | | | VISION2030と研究クラスター | | | 流体科学国際研究教育拠点 | | | 国際流動科学ウェビナー | | | 研究拠点形成事業 | | | 国際交流 | | | 教育 | | | 産学連携 | | | 社会貢献 | | | 教職員数・経費及び建物 | | | 研究活動 | | | 褒章・受賞・プレスリリース | | | 出版物 | | | 共通施設 | | | 案内 | 87 | # ■ Contents | Introduction | | |---|-----------| | Principle and History | 4 | | Organization | | | Organization | 5 | | Research Divisions and Research Centers | 6~8 | | Laboratories·Faculty | ·····9~10 | | ■ Creative Flow Research Division | | | Electromagnetic Functional Flow Dynamics Laboratory | 11~12 | | Integrated Simulation Biomedical Engineering Laboratory | | | Biomedical Flow Dynamics Laboratory | | | Aerospace Fluid Engineering Laboratory | | | Spacecraft Thermal and Fluids Systems Laboratory | | | Design of Structure and Flow in the Earth Laboratory | | | ■ Complex Flow Research Division | | | Heat Transfer Control Laboratory | 23~24 | | Advanced Fluid Machinery Systems Laboratory | | | Complex Shock Wave Laboratory | | | Computational Fluid Physics Laboratory | | | Nanoscale Flow Research Division Nanoscale Flow Research Division | 20 00 | | Molecular Heat Transfer Laboratory | 31~32 | | Quantum Nanoscale Flow Systems Laboratory | | | Biological Nanoscale Reactive Flow Laboratory | | | Molecular Composite Flow Laboratory | | | Biomolecular Flow Systems Laboratory | | | Global Collaborative Research and Education Center for Integrated Flow Science (IF) | | | Green Nanotechnology Laboratory | | | High Speed Reacting Flow Laboratory | | | Energy Resources Geomechanics Laboratory | | | Energy Dynamics Laboratory ———————————————————————————————————— | | | Multiphase Flow Energy Laboratory | | | Multi-Physics Design Laboratory | | | Reactive Flow Systems Laboratory | | | Novel Battery Nanoscale Flow Concurrent Laboratory | | | | 55~56 | | Lyon Center (LyC) | F7 F0 | | Mechanical Systems Evaluation Laboratory | | | Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) Lyon Center (LyC) | | | | | | Advanced Fluid Information Research Center (AFI) | | | Advanced Flow Experimental Research Center (AFX) | 63∼64 | | Aircraft Computational Science Center (ACS), | 05 | | IHI × Tohoku University Co-creation Research Center of Ammonia Value Chain for Carbon Neut | | | Technical Services Division | 00 | | Activities | 07 00 | | VISION2030 and Research Clusters | | | Fluid Science Global Research and Education Hub | | | International Flow Dynamics Webinar | | | Core-to-Core Program | | | International Exchange | | | Education | | | Industry-University Cooperation | | | Contribution to Society | | | Staff·Expenses and Building | | | Research Activities | | | Awards, Press Release | | | Publications | | | Common Facilities | | | Information | | # はじめに # 東北大学流体科学研究所 所長 丸田薫 本研究所は、高速力学研究所として1943年(昭和18年)に創設され、1989年(平成元年)に当時の神山新一所長の下で改組転換され「流体科学研究所」となり今日に至っています。流体科学研究所は、流体科学の基礎研究を基盤とした先端学術領域との融合、および重点科学技術分野への応用に関する世界最高水準の研究を推進すること、また研究を通じて社会課題の解決に貢献すること、さらに国際水準の次世代研究者および技術者を育成することを使命と目標に掲げております。流体科学は、気体・液体・固体の流れを連続体の流動として扱うマクロな視点と、分子・原子・荷電粒子の流動として扱うミクロな視点の双方から、物質の流れのみならず熱・エネルギー、情報などのあらゆる流れを解明する学問領域です。研究対象を応用分野と関連づけると、エネルギー・環境、航空宇宙・機械、医工学、新デバイス、高機能材料・物質科学、流体システム等のキーワードが挙がり、また対象となる空間的・時間的スケールは広範囲におよびます。 本研究所は2022年(令和4年)10月、附属未到エネルギー研究センターを改組、新たに附属統合流動科学国際研究教育センターを発足いたしました。同センターは流体科学研究の確固たる学術基盤を基に、多様な応用分野における社会課題解決までを包含した新概念「統合流動科学」を提唱しています。従来の国際研究教育センターによる国際活動全般のサポートと、日仏の組織的協働で大きな成果を挙げたリヨンセンターの活動を統合・強化し、国際的な流体・材料連携研究を推進しております。本改組では連携研究の対象を、カーボンニュートラルや先進半導体と言った先端分野にまで大きく拡大、社会課題解決への貢献を目指しております。その結果本研究所は、流動創成研究部門、複雑流動研究部門、ナノ流動研究部門の3研究部門と、附属統合流動科学国際研究教育センターと附属リヨンセンターからなる31の研究分野、さらに研究設備に関する実務全般を支える技術室を擁する研究所となりました。 本研究所は2010年(平成22年)より、文部科学省に認定された流体科学の共同利用・共同研究拠点となっており、各教員が独自に行う共同研究の他、同事業により年間100件を越える内外機関との共同研究をサポートしております。さらに多様な研究活動を推進するため、研究所独自のスパコンを運用する未来流体情報創造センター、風洞・衝撃波関連施設を運用する次世代流動実験研究センターを擁しております。 本研究所は2015年(平成27年)にVISION2030を採択、世界の共同研究ネットワークを活用し、2030年までに「流体科学における世界拠点」となり、安全・安心・健康な社会の実現、快適で豊かな社会の実現を目指す目標を掲げました。その中で研究出口戦略の一つとして研究クラスターという概念を導入しました。2021年には同VISION改訂を経て、環境・エネルギー、ナノ・マイクロ、健康・福祉・医療、宇宙航空と、社会課題解決の5つのクラスターを定義、研究成果の社会課題解決の適用により積極的に取り組んでおります。その一環として、2021年度よりJSPS研究拠点形成事業「低炭素社会の実現に向けたアンモニア燃焼・材料国際研究交流拠点の構築」を開始、また2022年9月にはIHI×東北大学アンモニアバリューチェーン共創研究所を創設、さらに2024年10月からは、燃料アンモニア利活用の国際展開に向け、英仏等の学術機関と共に、シンガポール政府の補助事業HYCOMBSを開始しております。 現在の社会課題はより複雑で広い分野に跨がり、その解決には異分野連携や国際協力が必須です。物質やエネルギーの輸送・化学反応を含む現象を研究対象とする「統合流動科学」の特性を活かしながら、基礎および応用研究の両者に、内外の共同研究パートナーとの協働を通じてこれまで以上に邁進してまいります。2004年(平成16年)から毎年仙台にて開催している国際会議ICFDは、2024年11月に第21回を迎えハイブリッド開催を継続、24ヵ国からの外国人340名を含む合計756名に参加いただき、統合流動科学の国際ネットワーキングの場として益々の発展を続けております。今後ともご関係各位のお力添え、ご指導ご鞭撻を賜りますよう、心よりお願い申し上げます。 2025年1月 # Introduction #### Institute of Fluid Science #### Director Kaoru Maruta The Institute of Fluid Science, IFS, was originally founded in 1943 as the Institute of High-Speed Mechanics, and it was reorganized in 1989 under Director Shinichi Kamiyama to form the current Institute of Fluid Science. The mission and goals of the IFS are to promote world-class research that merges advanced fields based on fluid science, apply them to priority science and technology areas, and contribute to solving various social problems. Furthermore, the IFS aims to foster next-generation researchers and engineers of international standards through our research activities. Fluid science is an academic field that not only deals with the flow of matter, but with various flows, including heat, energy, and even information. From a macroscopic perspective, it deals with the flow of gasses, liquids, and solids as continuum flows, and with the flow of molecules, atoms, and charged particles from a microscopic perspective. Keywords associated with our research activities include energy and environment, aerospace and machinery, medical engineering, new electric devices, high-performance materials and materials science, fluid systems and we deal with a wide range of multiscale physics, both temporally and spatially. In October 2022, the Institute reorganized its Innovative Energy Research Center and newly established the Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE). The latter promotes a new concept, Integrated Flow Science, grounded in a solid academic foundation of fluid science research and includes finding solutions to social issues in diverse applied fields. We will promote international collaborative research on fluids and materials by supporting the general international activities of the GCORE, as well as integrating and strengthening the activities of the Lyon Center, which has achieved great results through organizational collaboration between Japan and France. With this reorganization, we aim to greatly expand the scope of collaborative research to cutting-edge fields including carbon neutral studies and advanced semiconductors, and contribute to solving various social issues. As of 2024, the IFS has 31 research laboratories. This consists of three research divisions (Creative Flow Research Division, Complex Flow Research Division, and Nanoscale Flow Research Division), two research centers (IFS-GCORE and Lyon Center). In 2010, the IFS was accredited as a Joint Usage / Research Center for fluid science by Japan's MEXT, and it has been supporting over 100 collaborative research projects with domestic and overseas collaborators every year, in addition to the joint research conducted by individual research funds. Furthermore, to strengthen and promote research activities, the IFS also includes the Advanced Fluid Information Research Center (AFI), which operates a high-performance supercomputer, and the Advanced Flow Experimental Research Center (AFX), which operates several wind tunnel and shock wave related facilities. In 2015, the IFS VISION2030 was established, and the IFS aims to be a global research center for fluid science by 2030 by utilizing the global joint research networks. In 2021, a small revision was made to the VISION2030, under which we will continue to strengthen Integrated Flow Science as a fundamental academic basis and conduct research and educational activities toward the realization of a sustainable and advanced society. Under this new vision, we also started the JSPS Core-to-Core project of international research exchange for ammonia combustion and materials from FY2021. In addition, in September 2022, the IHI x Tohoku University Co-creation Research Center of Ammonia Value Chain for Carbon Neutrality was established. From October 2024, a large-scale international collaboration project, HYCOMBS, for hydrogen and fuel ammonia utilizations supported by CREATE, Singapore was initiated with several academic institutions of UK, France, Norway, and Singa- Today's social issues
are complex and span a wide range of fields; interdisciplinary collaboration and international cooperation are essential to addressing them. The IFS will make continuous efforts to work on both basic and applied research though collaboration with domestic and international joint research partners, leveraging the special characteristics of the Integrated Flow Science, which investigates phenomena including all kinds of transports and chemical reactions. The ICFD, which has been held in Sendai every year since 2004, was held as a hybrid conference in 2024 and gathered a total of 756 participants, including 340 foreigners from 24 countries. This successfully demonstrated the function of the ICFD as an international networking platform for the Integrated Flow Science. We sincerely ask for your continued support, guidance, and encouragement. January, 2025 #### 理念 時空間における流れの研究を通じて人類社会の永続的発展をめざします。 #### 使 命 流体科学の基礎研究と、それを基盤とした先端学術領域との融合、ならびに重点科学技術分野への応用において世界最高 水準の研究を推進して、新しい学理を構築、社会が直面する諸問題を解決するとともに、世界で活躍する若手研究者・技術 者を育成することを使命とします。 - 1)世界最高水準の研究を推進 - ①流体科学の基礎研究 - ②流体科学の基礎研究を基盤とした先端学術領域との融合 - ③重点科学技術分野への応用 - 2)新しい学理を構築 - 3)社会が直面する諸問題を解決 - 4)世界で活躍する若手研究者・技術者を育成 #### おいたち 流体科学研究所は、1943年に高速力学研究所として発足以来、本学の「研究第一主義」と「実学尊重」の伝統を掲げ、流れ に関わる学理の構築とその応用に関する研究を一貫して行っています。 #### 高速力学研究所 1943(昭和18)年10月5日 東北帝国大学に「高速力学研究所」として設立 1969(昭和44)年3月25日 1号館の竣工 1979(昭和54)年4月1日 気流計測研究施設を新設、低乱熱伝達風洞施設を設置 1988(昭和63)年4月1日 気流計測研究施設を廃止し、衝撃波工学研究センターを新設 #### 流体科学研究所 1989(平成元)年5月29日 「高速力学研究所」の改組転換により、12部門1附属研究センターからなる「流体科学研究所」 を発足 1990(平成2)年11月13日 スーパーコンピュータセンター竣工 1994(平成6)年11月10日 2号館竣工 1998(平成10)年4月9日 「流体科学研究所」の改組により4部門(16分野)、1附属研究センターが発足 「附属衝撃波工学研究センター」の廃止と「衝撃波研究センター」の発足 1999(平成11)年9月3日 スーパーコンピュータの効率的運用のため、「未来流体情報創造センター」を発足 2000(平成12)年4月1日 中核的研究拠点(COE)形成プログラム「衝撃波学際研究拠点」を設置 2003(平成15)年4月1日 「衝撃波研究センター」の改組により、「附属流体融合研究センター」を発足 2003(平成15)年9月1日 21世紀COEプログラム「流動ダイナミクス国際研究教育拠点」を設置 2008(平成20)年7月1日 グローバルCOEプログラム「流動ダイナミクス知の融合教育研究世界拠点」を設置 2010(平成22)年4月1日 共同利用・共同研究拠点「流体科学研究拠点」を設置 2013(平成25)年4月1日 「流体科学研究所」の改組により3部門、1附属研究センター(27分野)が発足 2013(平成25)年4月1日 次世代流動実験研究センター設置 2015(平成27)年4月1日 共同研究部門「先端車輌基盤技術研究(ケーヒン)」を新設 2015(平成27)年5月13日 国際研究教育センター設置 2017(平成29)年4月1日 国内の航空機産業振興を目的として「航空機計算科学センター」を発足 2018(平成30)年4月1日 リヨン大学との連携研究を目的として「附属リヨンセンター ―材料・流体科学融合拠点―」を 発足 2021(令和3)年7月1日 共同研究部門「先端車輌基盤技術研究(日立 Astemo) Ⅲ」を開始 2022(令和4)年9月1日 「IHI×東北大学アンモニアバリューチェーン共創研究所」を設置 2022(令和4)年10月1日 「附属未到エネルギーセンター」、「国際研究教育センター」の改組により、「附属統合流動科学 国際研究教育センター」を発足 ## **Principle** To promote the steady advancement of human society through the study of flows in time and space. #### **Mission** The mission of this institute is to establish new scientific theories, develop practical solutions to various problems faced by society, and foster young researchers and engineers who can work at international standards, by promoting worldclass level basic research in Fluid Science and related interdisciplinary areas, and its application in priority science and technological areas. - 1) Promotion of world-class research - 1 Carry out basic research in Fluid Science - ② Promote interdisciplinary collaboration with other advanced fields using basic research results - 3 Develop technological applications in priority science and technological areas - 2) Establish new scientific theories and principles - 3) Find solutions to issues facing mankind - 4) Foster young researchers and engineers capable of working internationally #### **History** The Institute of Fluid Science has upheld "Research First" principle and the tradition of "Practice-Oriented Research and Education" at Tohoku University since this institute's inauguration in 1943 as the Institute of High-Speed Mechanics, and has pledged commitment to the formation of theories regarding flow, as well as applications thereof. #### Institute of High-Speed Mechanics | Oct. 5, 1943 | Inauguration as the Institute of High-Speed Mechanics at Tohoku Imperial University | |---------------|--| | Mar. 25, 1969 | Completion of Building No.1 | | Apr. 1, 1979 | Opening of Air-Flow Measurements Facility, establishment of Low-Turbulence Wind Tunnel | | Apr. 1, 1988 | Retiring of Air-Flow Measurements Facility, opening of Shock Wave Research Center | Oct. 1, 2022 grated Flow Science (IFS-GCORE). | Institute of Flui | d Science | |-------------------|--| | May 29, 1989 | Organizational change to the Institute of Fluid Science, which consists of twelve research divisions and one attached research center | | Nov. 13, 1990 | Completion of Supercomputer Center | | Nov. 10, 1994 | Completion of Building No.2 | | Apr. 9, 1998 | Organizational change of the Institute of Fluid Science into four divisions with sixteen laboratories under and one research center, i.e. Shock Wave Research Center | | Sept. 3, 1999 | Opening of Advanced Fluid Information Research Center for efficient utilization of supercomputer | | Apr. 1, 2000 | Establishment of Center Of Excellence (COE) formation program: "The Interdisciplinary Shock Wave Research Center" | | Apr. 1, 2003 | Shock Wave Research Center reorganization leads to inauguration of Transdisciplinary Fluid Integration Research Center | | Sept. 1, 2003 | Establishment of 21stcentury COE program: "International COE of Flow Dynamics" | | Jul. 1, 2008 | Establishment of Global COE program: "World Center of Education and Research for Trans-Disciplinary Flow Dynamics" | | Apr. 1, 2010 | Commencement of Joint Usage/Research Center "Fluid Science Research Center" | | Apr. 1, 2013 | Organizational change of the Institute of Fluid Science into three research divisions and one attached research center with twenty-seven laboratories | | Apr. 1, 2013 | Establishment of "Advanced Flow Experiment Research Center" | | Apr. 1, 2015 | Opening of Fundamental Research of Advanced Vehicle Technology (KEIHIN) | | May 13, 2015 | Establishment of "Global Collaborative Research and Education Center" | | Apr. 1, 2017 | Opening of Aircraft Computational Science Center for promoting aviation industry in Japan | | Apr. 1, 2018 | Opening of attached Lyon Center (LyC) for promoting international joint research with Université de Lyon | | July 1, 2021 | Start of Fundamental Research of Advanced Vehicle Technology (Hitachi Astemo) III | | Sept. 1, 2022 | Establishment of IHI × Tohoku University Co-creation Research Center of Ammonia Value Chain for Carbon Neutrality | Reorganization of attached Innovative Energy Research Center and Global Collaborative Research and Education Center leads to attached Global Collaborative Research and Education Center for Inte- # 研究部門と研究センター Research Divisions and Research Centers 流体科学研究所(IFS)は3研究部門(流動創成研究部門、複雑流動研究部門、ナノ流動研究部門)、2附属研究センター(統合流動科学国際研究教育センター、リヨンセンター)から成り立っています。 The Institute of Fluid Science (IFS) consists of three research divisions and two attached research centers: Creative Flow Research Division, Complex Flow Research Division, Nanoscale Flow Research Division, and attached Global Collaborative Research and Education Center for Integrated Flow Science, and attached Lyon Center. ### ■ 部門とセンターの概要/ ### **Outline of Research Divisions and Research Centers** Creative Flow #### 【流動創成研究部門】 流動創成研究部門は、科学技術イノベーションを志向した、流体の物性や流体システムにおける流動下での新たな機能の 創成とその応用に関する研究を行うことを目的とします。電磁流体、生体流動、航空宇宙における流れの解明と新機能創成 を通じ、学術の発展ならびに革新的技術の確立に貢献します。 - 電磁場による流動下での新たな機能創成 - 次世代知的流体制御デバイス・システムの創成 - 計測融合シミュレーションによる医療工学研究 - 生体器官内の流動ダイナミクスの解明 - 航空宇宙システムの革新、安全、ものづくりの研究 - 次世代宇宙機の革新的熱・流体制御システムの創成 - 人と自然と科学技術が調和する複雑システムの設計 #### **Creative Flow Research Division** The Creative Flow Research Division was established to create and to apply novel functions in flows in fluid systems. The development of fluid science and the creation of innovative engineering are pursued through elucidation of flows and creation of novel functions in electromagnetic fluids, living body flows, and flows in aerospace conditions. - Creation of novel flow functions using an electromagnetic field - Development of next-generation intelligent fluid control devices and systems - Development of advanced medical devices based on measurement-integrated simulation - Clarification of flow dynamics in a living body - Innovation, safety, and manufacturing of aerospace systems - Creation of innovative thermal and fluids control systems for next generation spacecraft - Designing complex systems that harmonize people, nature, and science and technology Complex Flow #### 【複雑流動研究部門】 複雑流動研究部門は、流体科学の基盤となる、幅広い時空間スケールの多様な物理・化学過程が関わる複雑な流動現象の解明とその応用に関する研究を行うことを目的とします。複雑系熱・物質移動、キャビテーション、衝撃波、乱流などの熱と物質流動現象の普遍原理の解明および数理モデル構築を通じ、学術の発展ならびに革新的技術の創成を推進します。 - 時空間マルチスケールにおける複雑系熱·物質移動現象の解明と制御 - キャビテーションや沸騰による複雑流動現象の解明と流体機械システムの高度化 - 固気液媒体中の衝撃波複雑伝播挙動の解明と学際的応用研究 - 大規模数値解析による流体力学の普遍的·汎用的原理の発見と現象解明 ### [Complex Flow Research Division] The Complex Flow Research Division was established to explore and to apply complex flow phenomena related to various physical and chemical processes that constitute the foundation of fluid science. Development of fluid science and the creation of innovative technologies are pursued through investigation of heat and mass transfers in complex systems, cavitation, shock waves, turbulent flows and universal principles of heat and material flow phenomena, as well as construction of mathematical models. - Spatiotemporal multi-scale heat and mass transfer in complicated systems - Clarification of complex flow with cavitation or boiling and advancement of fluid machinery systems - Study on elucidation of complex propagation phenomena in gas-liquid-solid three-phase and its interdisciplinary application - Theoretical modeling for universal and specific complex flow phenomena Nanoscale Flow #### 【ナノ流動研究部門】 ナノ流動研究部門は、熱流体に関わるナノ・マイクロスケールの現象や物性に関わる基礎科学の展開や新分野創成を目的とします。電子・分子スケールの物質・運動量・エネルギー輸送メカニズムの解明や生体およびデバイス内におけるナノスケール流れの特性の発見を通じ、学術の深化・発展ならびに革新的ナノ熱流体デバイスや医療技術の創成を推進します。 -
強い非平衡状態にある気体流れの物理現象と輸送現象の解明と応用 - ナノスケール流動現象・界面現象の解明と応用 - 流体分子の量子性が影響する流動現象の解明と応用 - プラズマ流と生体環境に関わる現象解明とプラズマ医療への応用 - 分子スケールの物理現象が支配する大規模複合系における輸送現象の解明と応用 - 生体分子ナノ流動現象の解明と人工分子システムへの応用 - 革新的流動デバイスや流体の創成と応用(客員) #### [Nanoscale Flow Research Division] The Nanoscale Flow Research Division was established to advance basic science and to explore new R&D areas related to nano/microscale thermal and fluid phenomena and thermophysical properties. Creation of novel medical technologies and development of innovative nanoscale thermal and fluid devices are pursued through the progress and deepening of science, as well as investigation of mass-momentum-energy transfer mechanisms on scales of electrons-molecules and new discoveries of nanoscale flow characteristics in living bodies and nano-devices. - Physical and transport phenomena in non-equilibrium gas flow and their applications - Nanoscale flow and interfacial phenomena governing macroscopic thermal and fluid properties - Physical mechanism of the quantum effect of fluid molecules on flow dynamics - Reactions, thermal flow dynamics of plasma flow and their application for medical engineering - Transport phenomena in large-scale composite systems governed by molecular physics and their applications - Elucidation of biomolecular nanoflow phenomena and their application to artificial molecular systems - Development of novel flow devices utilizing unique nanoscale flow interfacial phenomena Integrated **Flow** ### 【統合流動科学国際研究教育センター】 統合流動科学国際研究教育センターは、統合流動科学を学術基盤として、グリーンナノテクノロジーや燃料アンモニアを はじめとする多様な応用分野への展開のための研究を行います。フランス、シンガポール、台湾、サウジアラビア、アメリカ における海外拠点とともに国際共同研究教育を推進し、社会インバクトを創出するアライアンス型の国際拠点となること を目指します。 - 原子層制御プロセスを活用する先端グリーンナノデバイスの研究 - 高速反応流の基礎現象解明と予測制御技術の高度化 - 地球環境問題とエネルギー問題の解決を目指した地殻の高度利用 - カーボンフリー燃料のための反応モデルと先進燃焼技術の開発 - マルチスケール異分野融合型混相エネルギーシステムの創成 - マルチフィジックス問題を数値解析技術により解決する次世代工学の創出 - 再生可能エネルギー由来の燃料の化学反応に関する研究 - ナノ流動現象の解析・制御による次世代電池システムの理論設計 - 社会問題の解決に寄与する統合流動科学に関する研究(客員) - 先端的な統合流動科学に関する研究(外国人客員) #### [Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE)] The Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) will conduct research on the academic foundation of integrated flow science for its deployment in diverse application fields, including green nanotechnology and fuel ammonia. We will promote international joint research and education with overseas centers in France, Singapore, Taiwan, Saudi Arabia, and the U.S., and aim to become an alliance-type international base that creates social impact. - Advanced green nanodevices based on atomic layer control processes - Combustion phenomena in aerospace propulsion systems and energy apparatuses - Development of greater depth subsurface system for the resolution of environmental and energy issues - Development of advanced combustion technologies and reaction models for future carbon-free fuels - Development of integrated multiscale multiphase flow energy system - Theory and algorithm development for computational analysis of multiphysics problems in aeroscience - Chemical kinetics of fuels derived from renewable energy - Theoretical design of innovative batteries based on the analysis and control of nanoscale flow - Integrated flow science and technology to contribute to the solution of societal issues (Visitting Professor) - Advanced integrated flow science (Foreign Visitting Professor) #### 【リヨンセンター ―材料・流体科学融合拠点―】 リヨンセンターは、フランス・リヨン大学(INSA Lyon, École Centrale de Lyon、リヨン第一大学)に教員と学生が滞在し、 国際共同研究を推進します。特に、材料科学と流体科学の融合分野におけるリヨン大学との連携研究により、安全・安心・健 康な社会の実現に寄与する工学領域を開拓・推進します。 - 流動システムの知的センシングと評価に関する研究 - 情報処理流体力学と材料分析との融合による知的材料流体システムの設計 - 時空間マルチスケールにおける流動ダイナミクスの解明 #### <u>(Lyon Center (LyC) — Integration Research Center for Materials and Fluid Sciences</u> The Lyon Center (LyC) was established to promote international joint research activities which the IFS faculty members and graduate students staying at Université de Lyon (INSA Lyon, École Centrale de Lyon, Université Claude-Bernard Lyon 1) carry out. Especially, we explore interdisciplinary science based on materials science and fluid science to answer current social challenges in the fields of transportation, energy and engineering for health. - Intelligent sensing and evaluation of mechanical system - Design of smart materials and fluids system - Spatiotemporal multiscale clarification of flow dynamic # 研究分野·教員一覧/Laboratories·Faculty (2025年1月1日現在) (As of January 1, 2025) | 流動創成研究部門
Creative Flow Research Division | | | | | | | | |--|---|-------|--|-----------|-----------------------|--|--| | 電磁機能流動研究分野 | Electromagnetic Functional | 教授 | Professor | 高奈 秀匡 | Hidemasa Takana | | | | HE HAY DO HE DO HE HAY DE STORE HE HAY DO H | Flow Dynamics Laboratory | 助教 | Assistant Professor | 金子 泰 | Yutaka Kaneko | | | | 知能流体制御システム研究分野 | Intelligent Fluid Control
Systems Laboratory | 教授 | Professor | 丸田 薫* | Kaoru Maruta* | | | | Integrated Simulation B | Integrated Simulation Biomedical | 教授 | Professor | 太田 信* | Makoto Ohta* | | | | 融合計算医工学研究分野 | Engineering Laboratory | 准教授 | Associate Professor | 船本 健一 | Kenichi Funamoto | | | | | Biomedical Flow Dynamics
Laboratory | 教授 | Professor | 太田 信 | Makoto Ohta | | | | | | 准教授 | Associate Professor | 安西 眸 | Hitomi Anzai | | | | 生体流動ダイナミクス研究分野 | | 特任准教授 | Specially Appointed
Associate Professor | 小助川 博之** | Hiroyuki Kosukegawa** | | | | | | 特任助教 | Specially Appointed
Assistant Professor | Jing LIAO | Jing LIAO | | | | 能如中中连任工资和农 众服 | Aerospace Fluid Engineering
Laboratory | 教授 | Professor | 大林 茂 | Shigeru Obayashi | | | | 航空宇宙流体工学研究分野 | | 准教授 | Associate Professor | 焼野 藍子 | Aiko Yakeno | | | | 宇宙熱流体システム研究分野 | Spacecraft Thermal and Fluids
Systems Laboratory | 教授 | Professor | 永井 大樹 | Hiroki Nagai | | | | ナ田然川14ンヘアム研先が到 | | 助教 | Assistant Professor | 伊神 翼 | Tubasa Ikami | | | | ウを供送されて、TTのAR | Design of Structure and Flow | 教授 | Professor | 丸田 薫* | Kaoru Maruta* | | | | 自然構造デザイン研究分野
in the Earth Labo | in the Earth Laboratory | 准教授 | Associate Professor | 鈴木 杏奈 | Anna Suzuki | | | | 複雑流動研究部門
Complex Flow Research Divisio | | | | | | | |---|--|-------|--|----|-----|-------------------| | Heat Transfer Control | Heat Transfer Control | 教授 | Professor | 小宮 | 敦樹 | Atsuki Komiya | | 江然利仰机无力到 | 伝熱制御研究分野 Laboratory | 助教 | Assistant Professor | 神田 | 雄貴 | Yuki Kanda | | 先進流体機械システム研究分野 | Advanced Fluid Machinery
Systems Laboratory | 教授 | Professor | 伊賀 | 由佳 | Yuka Iga | | | | 准教授 | Associate Professor | 岡島 | 淳之介 | Junnosuke Okajima | | | Complex Shock Wave | 教授 | Professor | 永井 | 大樹* | Hiroki Nagai* | | 複雑衝撃波研究分野 | Laboratory | 特任准教授 | Specially Appointed
Associate Professor | 大谷 | 清伸* | Kiyonobu Ohtani* | | 計算流体物理研究分野 | Computational Fluid Physics
Laboratory | 教授 | Professor | 服部 | 裕司 | Yuji Hattori | | | | 准教授 | Associate Professor | 廣田 | 真 | Makoto Hirota | | ナノ流動研究部門
Nanoscale Flow Research Division | | | | | | | | |--|--|--------|----------------------|-----------------|-------------------|--|--| | 非平衡分子気体流研究分野 | Non-Equilibrium Molecular Gas
Flow Laboratory | 教授 | Professor | 小原 拓* | Taku Ohara* | | | | 分子熱流動研究分野 | Molecular Heat Transfer | 教授 | Professor | 小原 拓 | Taku Ohara | | | | カ 丁 ※イン///エルルプレル ま タ | Laboratory | 准教授 | Associate Professor | SURBLYS Donatas | Donatas SURBLYS | | | | 量子ナノ流動システム研究分野 | Quantum Nanoscale Flow
Systems Laboratory | 教授 | Professor | 徳増 崇 | Takashi Tokumasu | | | | 生体ナノ反応流研究分野 | Biological Nanoscale Reactive | 教授 | Professor | 佐藤 岳彦 | Takehiko Sato | | | | 土体ノノ区心が切れて到 | Flow Laboratory | 助教 | Assistant Professor | 劉 思維 | Siwei LIU | | | | 分子複合系流動研究分野 | Molecular
Composite Flow | 教授 | Professor | 小原 拓* | Taku Ohara* | | | | 刀丁後口术川到彻九刀到 | Laboratory | 准教授 | Associate Professor | 菊川 豪太 | Gota Kikugawa | | | | 生体分子流動システム研究分野 | Biomolecular Flow Systems
Laboratory | 教授 | Professor | 徳増 崇* | Takashi Tokumasu* | | | | 土体が丁川動ノヘノム側丸が封 | | 准教授 | Associate Professor | 馬渕 拓哉 | Takuya Mabuchi | | | | ナノ流動応用研究分野 | Nanoscale Flow Application
Laboratory | (客員教授) | (Visiting Professor) | | | | | | | | | Professor | 遠藤 |
和彦 | Kazuhiko Endo | |---|---|-----------|--|-------|-----------------------|--------------------------------| | ブリーンナノテクノロジー研究分野 | Green Nanotechnology Laboratory | | | | | | | | Laboratory | 助教 | Assistant Professor | | 大介 | Daisuke Ohori | | | | 教授 | Professor | 小林 | 秀昭* | Hideaki Kobayashi* | | | | 准教授 | Associate Professor | | 晃弘 | Akihiro Hayakawa | | 高速反応流研究分野 | High Speed Reacting Flow | 特任准教授 | Specially Appointed
Associate Professor | | Kunkuma A.
ARATHNE | K. D. Kunkuma A.
SOMARATHNE | | | Laboratory | 特任助教 | Specially Appointed
Assistant Professor | Yi-Ro | ong CHEN | Yi-Rong CHEN | | | | 特任助教 | Specially Appointed
Assistant Professor | 伊藤 | 尚義 | Hisayoshi Ito | | | Energy Resources
Geomechanics Laboratory | 教授 | Professor | 伊藤 | 高敏 | Takatoshi Ito | | 地殻環境エネルギー研究分野 | | 助教 | Assistant Professor | 椋平 | 祐輔 | Yusuke Mukuhira | | 也成場場エイルギー側九刀封 | | 特任助教 | Specially Appointed
Assistant Professor | Wan | g LU | Wang LU | | | Energy Dynamics Laboratory | 教授 | Professor | 丸田 | 薫 | Kaoru Maruta | | エネルギー動態研究分野 | | 助教 | Assistant Professor | 森井 | 雄飛 | Youhi Morii | | | | 助教 | Assistant Professor | 齋藤 | 勇士* | Yuji Saito* | | | Multiphase Flow Energy
Laboratory | 教授 | Professor | 石本 | 淳 | Jun Ishimoto | | 昆相流動エネルギー研究分野 | | 助教 | Assistant Professor | 大島 | 逸平 | Ippei Oshima | | | | 教授 | Professor | 大林 | 茂* | Shigeru Obayashi* | | マルチフィジックスデザイン研究分野 | Multi-Physics Design
Laboratory | 教授 | Professor | 岡部 | 朋永(工学研究科)* | Tomonaga Okabe* | | | Laboratory | 准教授 | Associate Professor | 阿部 | 圭晃 | Yoshiaki Abe | | 反応性流動システム研究分野 | Reactive Flow Systems
Laboratory | 教授 | Professor | 中村 | 寿 | Hisashi Nakamura | | 欠世代電池ナノ流動制御研究分野 | Novel Battery Nanoscale Flow
Concurrent Laboratory | 教授 | Professor | 徳増 | 崇* | Takashi Tokumasu* | | ·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
· | Integrated Flow Science and Technology Laboratory | (客員教授) | (Visiting Professor) | | | | | 先端統合流動科学研究分野 | Advanced Integrated Flow
Science Laboratory | (外国人客員教授) | (Foreign Visiting Professor) | | | | | リヨンセンター
Lyon Center | | | | | | | |--|---|----------------------|---|--------------------|---------------------|--| | 流動・材料システム評価研究分野 | Mechanical Systems
Evaluation Laboratory | 教授 | Professor | 内一 哲哉 | Tetsuya Uchimoto | | | | | 教授 | Professor | 内一 哲哉* | Tetsuya Uchimoto* | | | 先進材料·流体設計研究分野 Advanced Materials and | Advanced Materials and Fluids | IFS-CGO·
特任教授(客員) | IFS-CGO·Speciality
Appointed Professor
(Visiting) | Jean-Yves CAVAILLÉ | Jean-Yves CAVAILLIÉ | | | 702-13-11 //017-1221 (1707) 27 | Design Laboratory | 客員准教授 | Visiting Associate Professor | 湯瀬 かおり | Kaori Yuse | | | | | 客員准教授 | Visiting Associate Professor | Joly-Pottuz LUCILE | Joly-Pottuz LUCILE | | | | | 客員准教授 | Visiting Associate Professor | Carole FRINDEL | Carole FRINDEL | | | | Flow Dynamics Laboratory | 教授 | Professor | 太田 信* | Makoto Ohta* | | | 流動ダイナミクス研究分野 | | 教授 | Professor | 小宮 敦樹* | Atsuki Komiya* | | | 川到メイノミクへ仰九万到 | | 教授 | Professor | 高奈 秀匡* | Hidemasa Takana* | | | | | 准教授 | Associate Professor | 焼野 藍子* | Aiko Yakeno* | | | | | | | | | | | IHI×東北大学アンモニアバリュー
キェーン共創研究所 Research Center of Am | IHI × Tohoku University Co-creation | 教授 | Professor | 小林 秀昭 | Hideaki Kobayashi | | | | Value Chain for Carbon Neutrality | 教授 | Professor | 藤森 俊郎** | Toshiro Fujimori** | | *兼務教員 **クロスアポイントメント *Concurrent **Cross-Appointment # 電磁機能流動研究分野 Electromagnetic Functional Flow Dynamics Laboratory 高奈 秀匡 Professor Hidemasa Takana 金子 泰 Assistant Professor Yutaka Kaneko 当研究分野では、「イオン液体」や「プラズマ流体」、「MR流体」を対象とし、電磁場下での複雑内部構造変化に伴う熱流動特性や化学的 特性を数値シミュレーションと実験を用いて多角的に明らかにするとともに、エネルギー・環境分野や新素材創製プロセスにおける革新 的技術シーズの創出を目指して研究を推進しています。 The Electromagnetic Functional Flow Dynamics Laboratory conducts research on innovative applications of "ionic liquids", "plasma flow" and "Magneto-Rheological fluids", especially focusing on energy and environmental fields and also material processing. This laboratory pursues the creation of cutting-edge technology in the targeting fields through the understanding of their physico-chemical characteristics associated with the complex fluid structure under electro-magnetic field by means of both numerical simulations and experiment comprehensively. #### イオン液体を活用した先進エネルギー・環境応用 イオン液体は液体でありながら、陽イオンと陰イオンのみで構 成される液体で、「水」、「油」に続く第3の液体と呼ばれています。 また、融点が低く、常温で「塩」として存在することから「常温溶融 塩」とも呼ばれています。イオン液体は、蒸気圧が極めて低いこと や高い電気伝導性を有していることなどから、電解質や反応溶媒、 アクチュエータとして応用されてきました。本研究室では、イオン 液体の新たな応用として、電気二重層現象を活用した電気二重層 キャパシタや宇宙推進機などの先進エネルギーデバイスの開発や イオン液体静電噴霧による二酸化炭素分離吸収の高度化に関して 数値シミュレーションと実験の両面から目指しています。 イオン液体静電噴霧による二酸化炭素分離・吸収の高性能化 Improvement of CO₂ absorption by ionic liquid electrospray #### **Advanced Applications of Ionic Liquids in Energy and Environmental Fields** Ionic liquids are unique liquids composed of only anion and cation and show completely different characteristics from water or oil. The melting point of ionic liquids is below room temperature and they are often referred to as the room temperature molten salt. Ionic liquids have been applied to electrolyte for batteries, reaction solvent or actuator because of their high electrical conductivity and ultra low vapor pressure. In this laboratory, we focus on the development of advanced energy devices with ionic liquids such as electro-double layer capacitor or colloidal space propulsion. Furthermore, the advancement of CO₂ capture by ionic liquid electrospray is conducted as an environmental application through experiment and numerical computation. ### 自然エネルギー高度利用を目指した電磁制御装置の開発と高性能化 本研究では、余剰風力からのエネルギー回収による風力エネル ギーのさらなる高度利用を目指し、電磁相互作用により液体金属 中に生じるローレンツ力を活用した軸回転トルク制御機構を新規 に開発し、その性能特性を評価しています。本装置を風車軸に直結 することにより、余剰風力エネルギーを電気エネルギーに変換し つつ、軸回転数もしくは軸トルクを一定に保つことが可能となり ます。 ### Development of Electromagnetic Energy Conversion Device for Advanced Utilization of Wind Energy In this study, aiming at energy recovery from excessive wind energy for advanced wind turbine, an innovative torque control device was developed utilizing the Lorentz force induced by electro-magnetic interaction in the liquid metal. This device enables to keep the constant rotational speed or torque with converting excessive wind energy into electric energy. 開発した同軸型エネルギー変換装置と回転数の定値制御および発電特性 The developed co-axial energy conversion device and its control characteristics of rotational speed with power generation 日本語 Fnglish #### ナノ繊維静電配向制御による革新的セルロース新素材創製プロセス 近年、木材繊維を化学的・機械的にナノサイズまで解きほぐしたセルロースナノファイバー(CNF)というバイオマス素材が世界的に注目を集めています。CNFは30-40本のセルルース分子が水素結合によって束になった幅数+nm、長さ数 μ mの高アスペクト比を有する高結晶性微細繊維であり、軽量および高強度、低熱膨張性などの優れた物理的特性を有しています。本研究室では、CNFから成る高強度セルロース単繊維の創製を目指していますが、こ のようなセルロース本来の優れた特性を有するセルロース単繊維を得るためには、セルロース単繊維を構成するCNFの繊維配向を制御し、一方向に揃えることが不可欠であることが明らかとなっています。本研究では、CNFの配向を制御する方法として、交流電場を利用したCNF静電流動配向法を新規に提案し、高強度のセルロース単繊維創製を目指しています。 #### Innovative Cellulose Material Fabrication by Electrostatic Fibril Alignment In recent years, cellulose nanofibrils (CNF) have attracted significant attention as a novel biomass material. The fibrils are produced by liberating wood fibers to their nano-scale building blocks and have considerable potential to be applied to composite materials due to their outstanding mechanical (high stiffness of the crystalline regions ~ 138 GPa) and thermal properties (low thermal expansion). In order to synthesis a cellulose filament with high mechanical properties from CNF, it is essential to enhance the CNF alignment in a cellulose filament. In this research, we propose the innovated approach to align the CNF in flow by AC electric field and clarify the fundamental alignment characteristics by optical measurement. セルロース単繊維創製用電場印加型フローチャネルと配向度計測のための光学系 Flow channel with electrostatic fibril alignment for innovative cellulose material fabrication and optical setup for the evaluation of CNF alignment # ナノ秒パルス放電による着火促進メカニズムの解明 ナノ秒パルス放電などにより生成される非平衡プラズマは、プラズマ中における高エネルギー電子の衝突によりラジカルなどの反応性化学種を低温で高効率に生成することができることから、燃焼促進や排ガス浄化など幅広く用いられています。本研究室では、特にプラズマ燃焼促進のための基礎研究として、高温・高圧下における空 気ーメタン混合プラズマ流に関して反応流動モデリングを構築し、数値シミュレーションによりナノ時間スケールでの活性種生成特性 やストリーマ進展過程を明らかにするとともに活性種の寿命評価を 行っています。さらに、小エネルギーの高速注入による局時・局所流動制御などの新たな応用に関する研究も行っております。 #### Computation Simulation on Ignition Enhancement by Nano second Pulsed Discharge Non-equilibrium plasma often generated by nano second pulsed discharge is widely applied to combustion enhancement or environmental purification using chemically reactive species produced through high energy electron impact reactions in plasma. As a fundamental research, we developed the numerical modeling of air-methane premixed nano-second pulsed discharge and clarified the radical production process in nano time scale with streamer propagation. It has been clearly shown that the ignition delay is improved by nano second pulsed discharge. Furthermore, researches are also undergoing on flow control by nano second pulsed discharge with local energy input to the flow. ナノパルス誘電体バリア放電 (DBD)による生成ラジカル濃度場およびプラズマ着火促進効果 Distribution of radicals generated by nano second dielectric barrier discharge (DBD) and the effect of nanosecond pulsed discharge on improvement of ignition delay # 融合計算医工学研究分野 Integrated Simulation Biomedical Engineering Laboratory 太田 信 Concurrent Professor Makoto Ohta 船本 健
Associate Professor Kenichi Funamoto 疾患の治療・予防技術の革新には、生体恒常性の維持と疾患の発症・進展を招く生体内現象のメカニズムの解明が必要不可欠です。私た ちの研究室では、流体工学を基盤として生体工学や細胞生物学を融合した学際的な研究に取り組んでいます。生体内の微小環境を生体外 で再現するマイクロ流体デバイス「生体模擬チップ」医療計測と数値解析を融合した計測融合シミュレーションにより、時間的・空間的に 変化する生体内環境における個々の細胞の応答や、細胞-細胞と細胞-周囲組織との相互作用、生体組織の変化のメカニズムについて研 究しています。 For technical innovation of treatment and prevention for diseases, it is essential to elucidate mechanisms for homeostasis and in vivo phenomena related to development and progression of the diseases. We perform interdisciplinary research based on fluid engineering, integrating biomedical engineering and cell biology. Changes of an individual cell response, cell-cell and cell-extracellular matrix interactions, and tissues are investigated by reproducing in vivo microenvironments with microfluidic devices "organ-on-chips" and measurement-integrated simulation. ### マイクロ流体デバイスによる生体内微小環境の再現 生体内の細胞は、運動や血流による力学的な刺激と、化学物質に よる化学的な刺激を感知して応答します。細胞の正常な応答は、分 化・形態形成・生体恒常性の維持にとって必要不可欠であり、万が 一それらの機能が破綻した場合には、疾患の発症や様々なダメー ジを引き起こします。私たちの研究室では、酸素分圧・力学的刺激・ 化学的刺激の3つの因子を制御し、生理的状態と病的状態の生体内 微小環境の両方を再現するマイクロ流体デバイス「3-in-1 生体模 擬チップ」を開発しています。本チップは生体内微小環境における 現象解明への貢献と、ドラッグスクリーニングなど創薬の基盤と しての応用が期待されています。 #### Reproduction of in vivo Microenvironments Using Microfluidic Devices Cells respond to mechanical stimuli caused by motion and blood flow and chemical stimuli by chemicals, and failures of such cellular functions possibly result in diseases or damages. In order to reproduce physiological and pathological in vivo microenvironments, we develop "3-in-1 organ-on-a-chip" which simultaneously controls oxygen tension and mechanical and chemical stimuli to cultured cells. The chip contributes to elucidation of phenomena in in vivo microenvironment, and is useful as a platform for drug discovery for diseases. 3-in-1 生体模擬チップ (上図)とチップ内に形成した微小血管網の顕微鏡画像(左下図)、細胞群の3次元動態のタイムラプス観察システム(右図) #### 細胞群の低酸素応答の解明と制御 生体組織内部の酸素濃度は大気中と比較して低く、時間的にも 空間的にも変化し、細胞活動に影響を与えます。例えば、がん組織 内部(がん微小環境)では、細胞の過剰な増殖と未熟な血管網の形 成により、酸素濃度の不均一な分布(空間変化)や急性の低酸素負 荷と再酸素化(時間変化)が生じています。酸素濃度の時間空間変 化は、がん細胞の遊走と血管新生を活発化させてがんの成長と転 移を促します。本研究では、がん細胞の遊走や血管内皮細胞単層 の物質透過性など、酸素濃度に応じた細胞動態や特性の変化を明 らかにし、それらを制御する研究に取り組んでいます。 低酸素環境におけるがん細胞の増殖の様子(左上図)、酸素条件によるがん細胞の遊走(右上 図) および血管内皮細胞の遊走(左下図)の計測結果、酸素条件による血管内皮細胞の形態変化 #### Elucidation and Control of Cellular Responses to Hypoxic Stresses An in vivo oxygen tension is lower than the atmospheric one and has spatial and temporal variations, affecting cell activity. In a tumor microenvironment, heterogeneous oxygen concentration is observed due to hyperproliferation of the cells and formation of immature vascular network. Such temporal and spatial variations of oxygen concentration activate migration of cancer cells and angiogenesis by vascular endothelial cells, leading to cancer progression and metastasis. We elucidate oxygen-dependent cellular dynamics and characteristics, e.g., cancer cell migration and vascular endothelial permeability, and investigate to control them. ### 医療計測と数値解析の融合による血行力学解析 生命の維持に不可欠な血流を障害する循環器系疾患は、健康な 社会の実現のために克服すべき重要な問題です。近年飛躍的に進 歩した医療機器によっても生体内の血流の情報を計測により完全 に把握することは困難です。また、高性能のスーパーコンピュータ によって超高速計算(実時間計算)が可能になったとしても、現実 には正確な計算条件が未知であるため、生体内の血流を完全に再 現することは原理的に困難です。本研究では、計測と計算を一体化 した計測融合シミュレーションにより、生体内の複雑な血流を解 明し、高度医療を実現するための研究を行っています。 ### Hemodynamic Analysis by Integration of Medical Measurement and Numerical Simulation Accurate diagnosis of circulatory diseases is a critical issue to realize a healthy society. Even a state-of-the-art medical equipment is not sufficient to measure the complete information on hemodynamics. The fastest supercomputer may perform an ultra-high speed computation (real-time computation), but is inherently incapable to repro- duce the real blood flows due to the lack of the exact computational condition for the relevant flows. We are doing a research to realize an advanced medical care by understanding complex hemodynamics through measurement-integrated simulation of blood flows. 2D Ultrasonic-Measurement-Integrated (UMI) blood flow analysis system Hemodynamic analysis in a carotid artery Numerical experiment of 3D UMI simulation 2次元超音波計測融合血流解析システムの解析フロー (上図)と構築したシステムの写真(左下図)、3次元超音波計測融合血流解析による壁せん断応力分布の再現の数値実験結果 (右下図) # 生体流動ダイナミクス研究分野 Biomedical Flow Dynamics Laboratory 太田信 Professor Makoto Ohta 安西 眸 Associate Professor Hitomi Anzai 特任准教授 小助川 博之 Specially Appointed Associate Professor Hiroyuki Kosugekawa 特任助教 Jing LIAO Specially Appointed Assistant Professor 生体流動ダイナミクス研究分野では、治療に直接役立つ新デバイスの開発と、新デバイスの性能評価法の確立を目指した研究を行って います。例えば、脳動脈瘤の治療方法の一つに、血管内治療(血管の中から治療していく方法)がありますが、血流を制御できるデバイスの 開発、そしてそのデバイスの性能を評価する必要があります。このような研究開発は、医療現場では重要な課題であり、医学と工学との共 同研究によってはじめて成立します。本研究分野では、このような医工連携プロジェクトを中心に、生体中の流体を取り扱っていきます。 The focus of the biomedical flow dynamics laboratory is to develop new concept of implant especially based on flow and to establish new methods for evaluating the implants. For example, when you treat a cerebral aneurysm with endovascular treatment, you should know the effects of medical devices on controls of blood flow. The flow may depend on the geometry, materials and clinical conditions. Since these are so big issues, we collaborate with biomaterial groups, biomechanical groups, and medical groups to gather their top knowledge. This field is called as a life science, or biomedical engineering. The aim of this lab is to support and improve our social quality of life by biomedical engineering. #### ディープラーニングによる血流動態予測 治療は、工学的に観れば、生体を制御し、自然回 復を促していくことといえます. 例えば、血管内 治療は血管、血液、血流をステントなどの医療デ バイスを用いて制御します. これまで血管内の流 れ場を知るため、これまでは侵襲的/ 非侵襲的な 血流計測や、コンピュータを用いた数値流体力学 (CFD)解析が行われてきました。しかし、計測に おける詳細な流れ場を知るための解像度の不十 分性や、CFD解析に要する長い計算時間が問題で した。そこで本研究では、CFD解析に代わる方法 としてディープラーニング技術を用い、医療用画 像から構築した血管形状に対して流れ場を瞬時に 推定する技術を開発しています。CFD解析では約 10分を要していたのに対し、ディープラーニング では約1秒で血流場を得ることができ、大幅な解 析時間の短縮が可能となりました。 大動脈流れの流線を可視化 (左:CFD により得られる数値解析結果、右:ディープラーニングによる予測結果) #### Prediction of 3D Hemodynamics by Deep Learning Technique A smart therapy has a good strategy with controlling human tissues such as blood flow, blood, and artery. In this field, we try to develop medical devices such as stent and evaluation using biomaterials or computational simulations. Hemodynamics measurement and computational fluid dynamics (CFD) have been performed under invasive/non-invasive techniques. However, still it is challenging to obtain detailed flow field within a second by measurement nor CFD. Then, we developed deep learning technique to predict 3D hemodynamics on cardiovascular system. This deep learning network can allow to obtain CFD-like results within a second, which needs 10 min in conventional CFD. 実形状の頭蓋骨ステントを実形状の患者に仮想的に留置し、コ ンピュータシミュレーションをすることに世界ではじめて成功 しました。その結果、瘤に流入する血流を阻外する能力がステン トにあることがわかりました。この技術は Virtual Intracranial Stent Challenge 07にて採用されてました。 The image below shows an integration of realistics stent data to realistic patient data. Our team firstly succeeded to develop this method in the world. And provided this techniques to VISC (2006). 仮想的にステントを留置した様子 血管造影で撮影した血管狭窄 PVA バイオモデル 血管など軟組織の力学性質を忠実に再現できるPVAバイオモ デルは、CT、MRI、超音波診断装置など多くの医療画像診断装置で 使用でき、治療方針や新しいデバイスの開発に使用され、脳外科 のみならずマイクロサージェリ分野などからも注目されています。 PVA biomodel is available to use under medical image equipments such as CT, MRI, or ultrasound and to be used for development of new medical treatment or devices. And so, PVA biomodel attracts not only neuro-sugeon fields, but also micro-surgeon fields. クライヨセラピーで用いるニードルを PVA 固形に穿通した様子を MRI で撮影した # 航空宇宙流体工学研究分野 Aerospace Fluid Engineering Laboratory 大林 茂 Professor Shigeru Obayashi 焼野 藍子 Associate Professor Aiko Yakeno 「流れ」に対して支配方程式が研究されており、これによって、船舶や旅客機など輸送機の性能、データの少ない大気圏突入する再使用 ロケットの性能、他の惑星での輸送機性能や銀河の形成さえも説明できるはずです。しかし、流れの非線形、散逸、偶然性の性質である「乱 流」や「遷移」を説明するのは、いまだに容易ではありません。歴史的に、私たちはこの複雑現象の理解に多大なる努力を注ぎ、利用しよう としてきました。現在、実際に航空機の開発現場では、例えば乱流モデルは汎用的に使用されています。新たな知見を生かせば、開発品の 生産性・信頼性のさらなる向上が期待でき、知見は他の複雑現象にも応用できます。このように私たちは、複雑現象の典型例でもある決定 論的支配方程式に基づく「流れ」の精緻な理解と、さらにそれによる革新的で実現性の高い工学技術の提案を目指しています。 Governing equations for "flow" have been investigated, which should be able to explain the performance of transport equipments such as ships and passenger airplanes, the performance of reusable rockets that re-enter the atmosphere for which there is little data, the performance of transport aircraft on other planets, and even the formation of galaxies. However, it is still not easy to explain "turbulence" and "transition," which are the nonlinear, dissipative, and random nature of flows. Historically, we have made great efforts to understand and try to utilize this complex phenomenon. Currently, in the development of aircraft, for example, turbulence models are used for general purposes. By utilizing new knowledge, we can expect to further improve the productivity and reliability of developed products, and the knowledge can be applied to other complex phenomena. In this way, we aim to precisely understand "flow" based on deterministic governing equations, which are a typical example of complex phenomena, and further propose innovative and feasible engineering technologies based on it. ### 磁力支持天秤装置や弾道飛行装置による機械支持のない流れと力測定 飛翔体の空力特性の測定では、一般に、模型の機械支持による影 響を避けられません。一方、磁力支持天秤装置(MSBS)は、電磁力 によって模型を宙に浮かせることで、より正確な測定を可能にし ています。これまでに、超音速飛行のため速応性の高いシステムの 構築もしてきています。現在は、流線型模型形状の抵抗値を測定 することで、低抵抗化デバイスの実証にも取り組んでいます。 ### Aerodynamic Force and Flow Measurements Using Magnetic Suspension and Balance System and Ballistic Range Facilities When measuring the aerodynamic characteristics of flying objects, the influence of mechanical support of the model is generally unavoidable. On the other hand, the Magnetic Suspension and Balance System (MSBS) enables more accurate measurements by suspending the model in the air using electromagnetic force. To date, we have also constructed a system with high-speed response for supersonic flight. Currently, we are also working on demonstrating drag reduction devices such like distributed micro roughness (DMR) by measuring the resistance value of a streamlined model shape. 砂状粗面 DMR の低抵抗化機構の調査など 磁力支持天秤装置などを用いた実証試験 Investigation of the mechanism of low resistance
of sandy rough surface DMR, etc. Demonstration test using magnetic suspension and balance equipment ### 高速飛翔体やジェットエンジンの性能を革新する流れの機構の解明と制御 流体機器表面付近では、流れが渦を作り、その空力性能を大きく 左右しています。大型旅客機の抵抗のうち約半分は空気の粘性に よる抵抗ですが、例えば工夫により層流から乱流への遷移を遅延 することで、抵抗低減を試みることができます。このように私たちは、 大規模流体計算や理論、実験を駆使し(場合によって数学者や物理 学者とも協力して)、流れ現象の解明と技術の実用化を目指してい ます。 ### Study and Control of Flow Mechanisms that will Revolutionize the Performance of **High-Speed Flying Vehicles and Jet Engines** Flows create vortices near the surface of transport equipments, which greatly affect its aerodynamic performance. Approximately half of the drag of large passenger aircraft is due to the viscosity of the air, but it is possible to reduce this drag, for example, by delaying the transition from laminar to turbulent flow with some ingenuity. In this way, we aim to elucidate flow phenomena and put technologies into practical use by making full use of large-parallel computation of flow, and theories and experiments (sometimes in collaboration with mathematicians and physicists). 巡航時条件 Mach $0.86~Re~1.75 \times 10^7~CRM-NLF$ 主翼遷移発生の再現計算や遷移の発生源となる支配方程式からの基底の特定 At cruise condition, Mach 0.86 Re 1.75×10^7 CRM-NLF main wing Reproduction of the transition occurrence and identify the basis from the governing equation that is the source of the transition # データ同化など 統計モデルと力学モデルの融合による流れ予測の高速化・高精度化に関する研究 データ同化は、実験値を再現するように、モデル計算の初期条件 や境界条件を決める手法です。これにより、実験と計算の両者の不 確かさを補いあい、計算コストを抑えつつ予測精度を向上させる ことができます。特に実際の開発現場で役立つと考えられ大きな 注目を集めています。データ同化は、台風の進路予想やエンジンの 着火遅れなど、モデルに不確実性の高い現象の予測と制御に有用 です。 #### Speeding Up and Improving the Accuracy of Flow Predictions by Combining Statistical and Dynamical Models, such as Data Assimilation Data assimilation is a method for determining the initial and boundary conditions of model computations to reproduce experimental values. This compensates for the uncertainties in both experiments and computations, and improves prediction accuracy while reducing computation costs. It is particularly useful in actual development sites and has attracted a great deal of attention. Data assimilation is useful for predicting and controlling phenomena with high model uncertainty, such as typhoon path predictions and engine ignition delays. 晴天乱気流による航空機揺動を高速かつ高精度に予測する技術の開発やデータ同化による非定常乱流モデル構築 Technology development to predict aircraft shaking due to 'clear-air turbulence' fast and with high accuracy and unsteady turbulence model construction by data assimilation tuning # 宇宙熱流体システム研究分野 Spacecraft Thermal and Fluids Systems Laboratory 永井 大樹 Hiroki Nagai 伊神 翼 Assistant Professor Tsubasa Ikami 宇宙機は、打ち上げ時から、宇宙空間、地球への帰還時において様々な熱流体環境に晒される。特に、次世代宇宙輸送システムの開発に は、大気圏再突入時の熱・空力特性の解明が必須である。本研究では、機能性分子センサーを用いた空力加熱推算手法の研究や高温(1000℃ 以上)、極低温などの極限環境場を計測できる熱流体計測手法の研究・開発を行っている。また極限熱環境下で長期間に亙るミッションを 行う次世代の宇宙機には、限られた電力、重力のリソースで内部機器の排熱が可能な熱制御システムが不可欠である。そこで本研究室で は、この要求に応えるべく、高熱輸送能力、軽量・省スペースな非電力熱輸送デバイスとしてループヒートパイプ(LHP)や自励振動ヒート パイプ(OHP)等の研究開発を行い、次世代宇宙機ミッションの実現にブレイクスルーをもたらすことを目指している。 A spacecraft is exposed to various thermal-fluid environments from the time of launch to the period in space and return to the Earth. Understanding of thermal and aerodynamic characteristics in re-entry to the atmosphere is essential especially in the development of the next-generation space transportation systems. In this study, we study the methods to estimate the aerodynamic heating by using functional molecule sensors, and study and develop thermal-fluid measurement technology which can be used to measure extreme environment fields with high temperatures (1000°C and higher) as well as cryogenic temperatures. For the next-generation spacecraft which is to carry out missions over long periods under extreme thermal environments, it is essential that they have thermal control systems capable of exhausting heat from the internal devices using the limited electricity and weight resources. This laboratory, therefore, tries to address this demand and bring about a breakthrough in a realization of next-generation spacecraft missions through our research and development of loop heat pipes (LHPs) and oscillating heat pipes (OHPs) as light-weight and space-saving/non-electric heat transport devices. ### 宇宙機が惑星大気に突入する際の空力特性・空力加熱現象の解明 宇宙機が惑星大気に突入する際に、問題となる極超音速領域で の空力加熱現象、また遷音速での動的不安定現象に着目する。前 者では、感温塗料を用いて機体かかる空力加熱を直接的に高精度 で推算できる計測手法の研究を行う。また同時に計測だけでなく、 CFDとの融合による機体設計のデータベースの構築も目指す。後 者では、バリスティックなどの自由飛行や磁力支持風洞による現 象解明を目指す。 #### **Understanding of Aerodynamic Characteristics and Aerodynamic Heating Phenomenon** We focus on the aerodynamic heating phenomenon occurring in the hypersonic region when a spacecraft enters the atmosphere of a planet, and the dynamic instability phenomenon related to the entry capsule when it decelerates from there to supersonic and transonic speed. 極超音速飛行体の空力加熱計測 Aerodynamic heating of Hypersonic airplane 遷音速におけるはやぶさカプセルの自励振動現象の解明 Study of self-oscillation phenomenon of HAYABUSA capsule in transonic flow 日本語 E 研究分野Webサイト #### 次世代宇宙機の熱制御デバイスの開発および革新的熱システムの開発 宇宙機への適用を目指した気液二相流熱制御デバイスの研究・開発を行う。特にLHP/OHPは駆動部分が無いため、軽量・省スペースな非電力熱輸送デバイスとしてリソースの限られている深 宇宙探査機への搭載を期待されている。最終的にはこれらを組み 合わせた省電力・高効率な革新的宇宙機熱制御システムの提案を 目指す。 #### **Development of Thermal Control Devices and Innovative Thermal Systems for Next-generation Spacecraft** We will research and develop thermal control devices utilizing gas-liquid two-phase flow (LHP, OHP, Mechanical Pump). Especially since LHP/OHP has no driving parts, expectations are high for installation in deep space spacecraft with limited resources as light- weight, space-saving non-electric thermal transport devices. Finally, we will try to propose an electricity-saving, high-efficiency innovative spacecraft thermal control system which combines these. 宇宙機における熱問題と気液二相流熱制御デバイス Thermal problem for spacecraft and vapor-liquid two-phase thermal control device #### 大気を有する惑星における航空機などの"流体力"を利用した新しい探査システムの研究・開発 現在、火星大気中を飛行探査する航空機(飛行機/ヘリ)を研究開発している。この中で我々が特に着目しているのは、低レイノルズ数領域における超高性能翼型の開発および流れ場の把握、そして、その流体及び飛行の制御(翼の空中展開等)である。また、地球上で唯一火星と同等な飛行環境を有する高度35km付近の高層大気中 において、飛行実証試験を実施し世界に先駆けてその実現可能性を示す予定である。この研究を通して、大気を有する他の天体において利用可能な、流体力を利用した航空機による新しい探査システム(Planetary Locomotion)の提案を目指す。 #### Research and Development of New Exploration Systems Utilizing the "Fluid-Dynamic Forces" on Planets with Atmosphere such as Airplane At present, we conduct research and development of Mars aircraft (airplane & helicopter) to explore while flying through the atmosphere of Mars. A special focus of this study is to develop a super-high performance airfoil in low Reynolds number region and understand its flow field, as well as control of fluid and flight (e.g. unfolding of the wings in the air). We also plan to conduct flight demonstrations at high altitude atmosphere around 35 km on earth, which has an equivalent flight environment as Mars, to show its feasibility ahead of the world. We will try to propose a new exploration system (Planetary Locomotion) which utilizes the fluid-dynamic forces such as the airplane for other planets with the atmosphere through this research. 火星探査航空機に関する研究 Study of Mars airplane # 自然構造デザイン研究分野 Design of Structure and Flow in the Earth Laboratory 丸田 薫 Concurrent Professor Kaoru Maruta 鈴木 杏奈 Associated Professor Anna Suzuki 自然構造デザイン研究分野では、地域資源を活かし、自分と異なる存在(人・生物・自然)を理解・尊重しながら、異なるもの同士が共生で きる持続可能な社会を築くことを目指しています。地域資源の中でも特に地熱・温泉資源に着目し、自然がつくり出した「かたち」とそこ での「ながれ」を理解することで、地熱資源の推定・予測・設計を可能とする方法論を確立します。また、背景の異なる人々が共に価値を創 る共創を実現するためのデザイン手法の理論構築を行います。 Our group aims to build a sustainable society in which different existence of beings (people, organisms, and nature) can coexist with each other, utilizing local resources and understanding and respecting others. We focus on geothermal resources in particular among regional resources and establish methodologies that enable us to estimate, predict, and design the geothermal resources by understanding the "structures" and the "flows" therein. We will also develop theories to realize co-design and co-creation, in which people with different backgrounds work together to create new values. ### 地熱資源の計測データに基づく推定・予測・設計手法の開発 地熱資源は地下数km下の熱水や蒸気を指しますが、取り過ぎ てしまうと自然とのバランスが崩れ、圧力や水量が下がってしま います。そこで、利用した水を再び地下に戻し、地下の熱で温め、 また生産するといった能動的な水の循環を作ることができれば、 持続的にその地域を利用していくことができます。本研究室では、 井戸から得られる移動現象に関わるデータに着眼し、数理科学・情 報科学を活用したアプローチや3Dプリンタを利用した構造制御 型流動実験等のアプローチで、新たな地熱資源の推定・予測・設計 手法を開発しています。 #### Development of Estimation, Prediction, and Design Methods from Measurable Data of Geothermal Resources Geothermal resources refer to hot water and steam a few kilometers below the ground, but if too much is taken, the balance with nature will be lost and the pressure and water volume in underground will drop. Therefore, if we can create an active water cycle where the used water is returned to the ground again, heated by the underground heat, and produced again, we can use the area sustainably. Our group develops new methods for the estimation, prediction, and design of geothermal resources by focusing on data related to transport phenomena obtained from wells and utilizing approaches based on mathematical and information science and structure-controlled flow experiments. 地熱開発における能動的な還元 (涵養)の設計 Design of reinjection for geothermal development き裂ネットワークモデルのデザイン Design of 3D fracture network 3D プリンタで印刷されたサンプル 3D printing sample CT scan image 直接シミュレーションによる流れ場の結果 Simulation result of flow 語 English 研究分野Webサイト #### トポロジカルデータ解析を用いた複雑構造内の流動特性評価 トポロジカルデータ解析とは、トポロジーと呼ばれるつながり方に着目する数学を活用することで、単純なバターンマッチングでは見つけることが困難なような複雑かつ大量のデータから関連する幾何学的情報を抽出し、特徴量の推定を行います。本研究室 では、岩石のき裂構造を含む複雑な構造データを解析し、幾何学的 特徴から、例えば、流動特性を推定する手法を開発しています。複 雑なものを複雑に捉えるのではなく、複雑なものから本質的な情 報の抽出を目指しています。 #### **Evaluation of Flow Characteristics in Complex Structures Using Topological Data Analysis** Topological data analysis is based on a field in mathematics called topology that focuses on connectivity, which can extract relevant geometric information from large volumes of complex data that would be difficult to find using simple pattern matching, and to estimate the amount of features. We develop methods to analyze complex
structural data, including fracture network structures in rocks, and to estimate, for example, flow properties from geometric features. Our goal is to extract essential information from complex objects rather than to express the complexity in complex ways. バーンス)ンドがモロノーによる成例子構造の表現 Schematic image of topological features captured by persist homology パーシステンス図による岩石構造の定量化 Quantification of rock structures using persistence diagram # 異分野・異業種・地域との連携による地域共創(クロスポリネーション)のモデリング 地熱資源などの共通資源(コモンズ)の利活用に関しては、異なる背景や問題意識を持つ多様なステークホルダ同士で意見が対立し、共に納得のいく合意に至らない場合があります。一方、異分野・異業種など、自分と異なるものとの交わりは、クロスポリネーションと呼ばれ、個人や組織にとって新しいアイディアや刺激的な経験をもたらし、持続的な成長と発展に貢献します。本研究室では、 異なるもの同士が、それぞれ共通の目的をかたちづくりながら、あるいは、異なる目的を持ちながらも共に協力し、価値を生み出していくクロスポリネーションを異分野・異業種・地域との連携によって理解していことで、効果的な地域共創の促進、新たな価値創造への貢献を目指します。 #### Modeling Regional Co-Design/Co-Creation through Collaboration with Different Fields, Industries, and Regions With regard to the use of common resources such as geothermal resources, diverse stakeholders with different backgrounds and awareness of issues may disagree and fail to reach a satisfactory agreement. On the other hand, cross-pollination, which is an interaction with people from different fields or different industries, can bring new ideas and stimulating experiences to individuals and organizations, contributing to sustainable growth and development. We aim to understand "cross-pollination" through collaboration with different fields, industries, and regions and to promote effective regional co-design/co-creation for the creation of new values. 異分野・異業種・地域との対話の場 Dialogue among different fields, industries, and regions 哲学者バースの調理学・開理学・天学的の区別を用いて課題解決の登理 Organizing problem-solving based on Peirce's distinction between logic, ethics, and aesthetics # 伝熱制御研究分野 **Heat Transfer Control Laboratory** 小宮 敦樹 Professor Atsuki Komiya 神田 雄貴 Assistant Professor Yuki Kanda 通常は直接目で観ることのできない熱・物質移動現象をレーザー光を使って"可視化"し、生体内や無重力環境といった極限環境下にお ける熱・物質輸送現象を研究しています。光の干渉を利用した干渉法と呼ばれる技術を用いて、サブミクロン領域で起こる輸送現象を高 精度に可視化できるシステムを開発しています。位相シフト技術を導入することで、信頼性の高い可視化技術を確立し、気液界面でのガ ス吸収過程やタンパク質の非定常拡散場、または沸騰・凝縮などの相変化現象といった熱・物質輸送現象を可視化しています。併せて、薄 膜コーティングにおけるナノスケールの膜厚分布計測も、この高精度可視化システムを使ってチャレンジしています。これら光を使った 技術で、複雑系物質輸送過程を定量的に評価し、さらにはそれら輸送現象を能動的に制御する技術開発を進めています。 Precise and active controls of heat and mass transfer under extreme conditions such as micro/nano scale and microgravity environments are important for future engineering science and technology. This laboratory has been conducting research on the fundamentals of micro/ nano scale heat and mass transfer controls using advanced optical systems such as a laser interferometry and ellipsometry, and applying them to the several engineering systems such as low emission energy system, advanced heat transfer enhancement system, measurement system of precursor film thickness, and mass transfer control system for pure protein crystallization. #### 革新的光学干渉法による複雑系熱・物質輸送の高精度可視化 従来の光学干渉計を改良利用し、視野1mm四方以下のマイクロ 領域を高精度に可視化できるシステムを開発しています。位相シ フト技術を導入することで、非定常拡散場や気液界面でのガス吸 収過程および微小液滴端の先行液膜の高精度可視化に成功しまし た。これらのシステムを使って、複雑系における熱・物質の輸送過 程を定量的に評価する研究を進めています。 #### Precise Visualization of Complex Heat and Mass Transport Phenomena by Interferometry A precise measurement system of heat and mass transport phenomena in sub-micron scale is developed by using an optical system. By applying the phase-shifting technique to the conventional interferometer, we have successfully visualized transient mass diffusion field, gas absorption process at gas-liquid interface and precursor film dynamics at the edge of small droplet. Quantitative evaluation of mass transport phenomena in complex system has been studied. 位相シフト干渉計 Phase-shifting interferometer 気液界面でのガス吸収 Gas absorption at gas-liquid interface タンパク質の拡散現象 Transient diffusion field of protein 付相シフトエリプソメータ Phase-shifting ellipsometer 基板状態の違いによる液滴形状の違い Distinction of the shape pf droplet due to substrate 先行薄膜の可視化 Visualization of precursor film 位相シフト技術を用いた高精度可視化システム Precise visualization systems assisted by phase-shifting technique 日本語 English 研究分野Webサイト ### 高速位相シフト干渉計による非定常熱・物質輸送現象の計測とその応用 高速度カメラと光学干渉計を応用することで、相界面における 非定常な熱・物質輸送現象を観察し、結晶生成/分解、吸着、溶解現 象における輸送場や熱物性を明らかにする研究を進めています。 本研究室では、イオン液体への二酸化炭素吸収、ガスハイドレート による脱塩、超臨界二酸化炭素中での物質の溶解現象について調 べています。 #### Study on the Measurement of Transient Heat and Mass Transfer Phenomena Using High-Speed Phase-Shifting Interferometer and Their Applications Transient heat and mass transfer phenomena in the vicinity of phase interfaces are visualized by a high-speed camera and optical interferometers, aiming to elucidate the characteristics of transport phenomena and thermal properties involved in crystallization/decompo- sition, adsorption, and dissolution. In our laboratory, carbon dioxide absorption in ionic liquids, desalination using gas hydrates, and the dissolution of substances in supercritical carbon dioxide have been studied. 高速位相シフト干渉計 High-speed phase-shifting interferometer 超臨界二酸化炭素中における熱輸送現象の可視化 Visualization of heat transfer phenomenon in carbon dioxide under supercritical condition #### 大型干渉計を用いた流動場における熱・物質輸送の評価 サブミクロンオーダーの熱・物質輸送現象を可視化する技術を と同じ原理を使って、比較的大きな熱・物質輸送現象である自然対 流の乱流遷移現象や一様流中に形成される温度境界層・濃度境界 層を観察し、伝熱促進・制御に向けた研究を進めています。流れの 遷移を観察するため大型干渉計を製作し、移流による熱・物質伝達 機構の解明を目指しています。 ### **Evaluation of Convective Heat and Mass Transfer Using Large-Scale Interferometer** High temporal visualization system for transient heat and mass transfer phenomena in milliseconds or less are developed by applying our special prism and a high-speed camera to the interferometer. Appling this system, the decomposition and dissolution phenomena of substances are evaluated by measurement of transient heat and mass transfer phenomena. In our laboratory, gas hydrate decomposition and dissolution phenomena of organic substances in supercritical fluid have been studied. 大型干涉計外観 Exterior of large-scale interferometer 自然対流温度境界層の実験的 / 数值解析的可視化 Experimental/numerical visualizations of thermal boundary layer of natural convection 大型干渉計システムと可視化例 Measurement system of large-scale interferometer and visualization examples # 先進流体機械システム研究分野 Advanced Fluid Machinery Systems Laboratory 伊賀 由佳 Yuka Iga 岡島 淳之介 Associate Professor Junnosuke Okajima 当研究分野では、キャビテーションや沸騰等が引き起こす複雑気液二相流動現象の解明と、それに関連する流体機械システムの高度化 に関する研究を、数値シミュレーションと実験の両面から行っています。 In this laboratory, complex gas-liquid mixture flow phenomena, especially cavitation and boiling, are studied using supercomputing and experiments. Additionally, the advancement of fluid machinery systems with the mixture flows is investigated. #### 液体ロケットターボポンプに発生するキャビテーション不安定現象 液体ロケットエンジンのターボポンプ入口にあるインデューサ と呼ばれる軸流ポンプでは、キャビテーション不安定現象と呼ば れる振動現象が発生することがあります。これは、キャビテーショ ンサージや旋回キャビテーションと呼ばれ、推進剤流量の脈動や、 回転非同期の軸振動、ポンプ性能の低下を引き起こし、さらには実 際に重大事故の原因となった例も報告されています。特に超同期 旋回キャビテーションは、通常のポンプで発生する旋回不安定と は逆向きに伝播するロケットポンプ特有の不安定現象で、発生メ カニズムが解明されておらず大変興味深い現象です。本研究室では、 このキャビテーション不安定現象の振動特性の予測、抑制・制御手 法の開発、発生メカニズムの解明などを行っています。 #### **Cavitation Instabilities in Liquid Propellant Turbopump** In an axial-flow pump which is called inducer in liquid-propellant rocket turbopump, undesirable oscillation phenomenon is caused by cavitation. It is called cavitation instabilities; rotating cavitation causes asynchronous axial vibration of the turbopump and cavita- > tion surge brings pulsation of working fluid. When the cavitation instabilities occur in the inducer, efficiency of the turbopump declines and launch failure of the rocket was rarely reported. Especially, super-synchronous rotating cavitation has opposite characteristics of propagation direction to the general rotating instabilities in any other rotating machinery. The occurrence mechanism has not been clarified, so that, it is very interesting phenomenon. In this laboratory, prediction of the oscillation characteristics, development of new control/suppression technique and clarification of occurrence mechanism are attempted. 超同期旋回キャビテーション Super-synchronous rotating cavitat インデューサに発生する翼端もれ渦キャビテーション Tip leakage vortex cavitation in inducer 日本語 #### キャビテーションの熱力学的抑制効果の解明 ロケットの推進剤である液体水素、液体酸素で発生するキャビ テーションでは、蒸発潜熱による温度低下の影響で、その体積が抑制されることが知られていますが、実際にどの程度抑制されるかを予測することは難しいため、ロケットポンプの設計に抑制効果を有効に利用できていません。そこで本研究室では、推進剤と同程 度の熱力学的抑制効果を有する高温水のキャビテーション実験におけるキャビティ内部温度の高精度計測や、独自に開発した熱的モデルを用いた極低温キャビテーションの数値解析における乱流熱伝達の評価を通じて、キャビテーションの熱力学的抑制効果の解明を試みています。 #### **Clarification of Thermodynamic Suppression Effect of Cavitation** It is known that the volume of cavitation is suppressed due to decrease of temperature associated with latent heat of evaporation in liquid hydrogen and oxygen which are propellants of liquid rocket. But the actual degree of suppression of cavity volume cannot be predicted, then the suppression effect is not utilized in the design of the present rocket pumps. In this laboratory, in order to clarify the thermodynamic suppression effect, high-accuracy temperature measurement inside the cavity is done in hot water tunnel experiment in which the thermodynamic effect is same degree with that in the propellant and estimation of turbulent heat transfer is done in numerical simulation of cryogenic cavitation by using in-house thermal model. 高温水キャビテーションタンネル実験設備とNACA0015 翼形まわりのキャビテーションの様相 (140°C) Hot water cavitation tunnel facility and the aspects of cavitation around NACA0015 hydrofoil (140°C) ### 相変化を伴う気液二相流における熱輸送現象の解明とその応用 気液二相流であるキャビテーションや沸騰では、気液界面での 熱移動に伴う蒸発・凝縮が、流れ場に大きな影響を与えます。また、 固体壁面上の流体は、固気液接触領域を形成し、材料や濡れ性の違いで熱・物質の流れは変化します。本研究室では、このような界面 を通じた熱輸送現象の理解のために、動的接触線まわりの熱流動 解析やそれを利用した沸騰現象の数値シミュレーション、高速流動場のサブクール沸騰実験などを行っております。さらにこれらの熱輸送機構の高度化を通じて、次世代冷却システムへの貢献を目指しております。 # Thermal Transport in Two-Phase Flow with Phase Change and Its Application In cavitation or boiling flow, phase change such as evaporation and condensation occurs with heat transfer through a liquid-vapor interface. Additionally, thermal interaction between the two-phase fluid and the solid wall is affected by material properties and wettability. In this laboratory, to understand thermo-fluid phenomena through the interface, the analysis of the evaporation process around
moving contact line, numerical simulation of boiling phenomena, and experiment of subcooled boiling in high-speed flow field are being conducted. We aim to contribute to the next-generation cooling system through the sophistication of these thermal transport mechanisms. ミクロ液膜形成を考慮した核沸騰現象の数値シミュレーション Numerical simulation of nucleate boiling with microlayer evaporation 高速流動場中の非定常サブクール沸騰 Unsteady subcooled boiling flow in high-speed flow field # 複雑衝擊波研究分野 Complex Shock Wave Laboratory 永井 大樹 Concurrent Professor Hiroki Nagai (兼) 特任准教授 大谷 清伸 Concurrent Specially Appointed Associate Professor Kiyonobu Ohtani 衝撃波現象は航空宇宙をはじめ材料工学、医療、地球物理と様々な分野に関わり、重要な研究課題です。複雑衝撃波研究分野では、固気 液三相の全て媒体内で伝播する複雑な衝撃波挙動の基礎現象の解明およびその学際応用について研究を行っています。 Shock wave phenomena associated with various research field such as aerospace engineering, material engineering, medical and biomedical engineering, and geophysics, is significant problem. The complex shock wave laboratory investigates complex propagation phenomena of shock wave in gas-liquid-solid three-phase for understanding a fundamental mechanism and its interdisciplinary application. #### 生体内における衝撃波伝播挙動の解明 生体を構成する物質に近い水中の衝撃波および膨張波現象の解 明は衝撃波医療応用において重要な研究課題である。本研究では 音響学における透過・反射で重要なパラメータである音響インピー ダンス(媒体の密度と音速の積)に着目し、音響インピーダンスを 考慮した生体模擬物質を用いたモデル実験で生体内の衝撃波の伝 播、干渉挙動を調べ、局所的な高圧と気泡生成につながる負圧領域 の発生を確認することで衝撃波による生体損傷の機序解明を行い、 その発展としてその防御方法の確立を目指します。 #### Study on Shock Wave Propagation Phenomena for Human Body Tissue Protection Shock wave propagation in water similar to material for forming tissue of living and expansion wave phenomena are an important area of research for shock wave medical and biomedical application. We focus on acoustic impedance value, obtained for the product of the density and sound speed in substance, investigates to shock wave propagation and interaction phenomena in simulated biological model in consideration of acoustic impedance for understanding of shock wave tissue damage mechanism. We aim establishment of human body tissue protection method from shock wave by using the obtained knowledge about shock wave propagation phenomena such as local elevation of pressure and negative-pressure region related to cavitation bubble generation. 音響インピーダンスを考慮した生体模擬材料中の衝撃波伝播挙動 Shock wave propagation phenomena in simulated biological model in consideration of acoustic impedance Pressure history near the interface IS: Incident Shock Wave RS: Reflected Shock Wave RE: Reflected Expansion Wave CB: Cavitation Bubble HP: Hydrophone ### 固気液混相媒体干渉による衝撃波圧力低減方法の確立 爆発現象等による衝撃波圧力は人体や建物等の構造物に甚大な被害を及ぼす可能性があり、衝撃波医療、建築・土木等の分野において重要な研究課題である。本研究では水液滴群、多層金網、多孔質体等の各媒体とその組合せによる固気液混相の媒体との衝撃波 干渉によって、抵抗や熱移動等の作用で衝撃波威力を低下させ、衝撃波圧力が低減する機序解明を実験および数値解析により行い、 新たな衝撃波低減手法の確立を目指しています。 #### Study on Establishment of Shock Wave Pressure Attenuation Method by Solid-Gas-Liquid Multiphase Medium Interaction Shock wave pressure caused by explosions and other phenomena can cause extensive damage to the human body and structures such as buildings, and is an important research topic in the fields of shock wave medicine, architecture, and civil engineering. This research aims to establish a new shock wave attenuation method by experimentally and numerically analyzing the mechanism by which shock wave interaction with solid-gas-liquid multiphase media such as water droplets, multilayer wire gauze, porous media, and combinations of these media reduces the shock wave power and pressure through the effects of resistance and heat transfer. Shock wave pressure ratio after interacting with multilayer wire gauze 様々な媒体との干渉による衝撃波圧力低減(左:水液滴群、右:多層網媒体) Shock wave pressure attenuation by interfacing with various media (left: water droplets, right: multilayer wire gauze) # 超音速自由飛行体の空気力学的の解明 超音速旅客機のソニックブーム低減技術や火星探査用カプセル 開発等に関わる超音速自由飛行体の空気力学的特性、機体発生衝撃波と機体周りの流れ場について弾道飛行装置を用いた超音速自 由飛行実験で解明を進めています。また様々な形状模型の超音速 射出技術とその定性的、定量的評価のための新たな計測技術の開 発も取り組んでいます。 ### Study on Supersonic Free-flight Projectile for Aerodynamics We investigate experimentally aerodynamic properties for supersonic free-flight model, its generated shock wave and flow fields regarding development of the silent supersonic transport and Mars entry capsule by using ballistic range. And we focus on a development of supersonic launching method for various complex shaped models and their quantitative and qualitative new measurement. 火星大気模擬気体中の超音速自由飛行するカプセル形状模型 Supersonic free-flight of capsule model in CO₂ gas 様々な形状模型の高速射出技術開発 (超音速自由飛行するリング模型) Development of new supersonic model launching method (Supersonic freeflight ring shaped model) # 計算流体物理研究分野 Computational Fluid Physics Laboratory 席田 直 Associate Professor Makoto Hirota 流動現象は、生物レベルから地球・宇宙スケールの諸現象、さらに航空宇宙、地球環境、次世代エネルギー産業などの工学応用など、幅広 い分野にあらわれます。コンピュータの飛躍的な発達に伴い、流動現象のコンピュータシミュレーション研究の応用範囲が拡大する中で、 シミュレーションの精度に対する要求は高度化し、また大規模データから知見を引き出す手法の開発へのニーズが高まっています。当研 究分野では、流動現象の大規模コンピュータシミュレーションに関する研究、すなわち新しいシミュレーション技術の開発とその応用研 究を行っています。さらに数理解析的アプローチによる流体力学の基礎研究を行っています。 Flow phenomena are ubiquitous in many areas ranging from biological to astronomical scale and in many applications including aerospace engineering, environmental studies and energy technologies of next generation. Thanks to the rapid growth of computational power, computer simulation of flow phenomena has acquired a wide range of application. There are increasing needs for highly accurate simulation as well as novel methods for obtaining useful knowledge from huge data. In our laboratory, we are studying flow phenomena by numerical simulation. New methods for numerical simulation and their application are developed. We are also doing theoretical studies of fluid dynamics by mathematical approach. #### 複雑流動現象の大規模数値シミュレーション研究 流体科学の基礎的な問題から応用的な問題まで幅広く、複雑流 動現象の大規模コンピュータシミュレーション研究に取り組みます。 特に、乱流を中心とする複雑流動現象を高い精度で解析し、乱流の 統計的性質の解明とモデリングに資することを目的としています。 #### **Direct Numerical Simulation of Complex Flow Phenomena** We study complex flow phenomena by direct numerical simulation. In particular turbulent flows are investigated using highly-accurate numerical methods in order to understand the statistical properties of turbulence and develop accurate turbulence models. 乱流現象の数値シミュレーション例 Direct numerical simulation of turbulent flows #### 流動現象の高精度数値解法の開発 自然現象や工業的な場面でわれわれが遭遇する流れは、一般に 複雑な形状をもつ物体や、運動・変形する物体を含んでいます。これを高い精度で数値解析により捉えることは複雑流動現象の理解 や制御などの応用のために重要です。そのための数値計算手法の 開発と、スーパーコンピュータによる現実的大規模シュミレーショ ン研究を行っています。 #### **Development of Highly-Accurate Method for Numerical Simulation of Complex Flow Phenomena** The flows in nature and engineering often involve complex bodies which move and/or deform in the flow regions. We develop numerical methods for highly-accurate numerical simulation of the complex flow phenomena. Using the methods we also perform realistic direct numerical simulation of various flow phenomena. Penalization 法による数値シミュレーション Numerical simulation by Penalization method #### 渦のダイナミクスと数理流体力学 流体現象の解明のために渦運動の理解は重要な役割を果たします。渦の動力学の立場から、渦構造のもつ特性・多様性・普遍性を解明することを目標とし、さまざまな渦構造の性質とダイナミクス について研究しています。また、流体科学研究の発展においては、 基礎的な研究手法の開発・応用は重要な位置を占めます。微分幾何 学や解析学などの数学的手法を応用する研究を行っています。 #### **Vortex Dynamics and Applied Mathematical Fluid Dynamics** It is important to understand the vortex dynamics in investigating flow phenomena. The fundamental properties and the dynamics of various vortical structures are studied. Our goal is to reveal the characteristics, universality of the vortical structures from the viewpoint of vortex dynamics. Fundamental and general methods are important in the research of fluid science. Various tools in mathematical physics, especially in differential geometry, functional analysis, dynamical system etc. are developed and applied for fluid science. 渦の曲率不安定性の理論と渦の不安定化現象 Theory of curvature instability and destabilized vortex # 分子熱流動研究分野 Molecular Heat Transfer Laboratory 教授 小原拓 Professor Taku Ohara 准教授 Donatas SURBLYS Associate Professor 熱流体現象を分子運動レベルで解析することは、現象の本質的なメカニズムを理解して現象を制御することにより、必要な熱流体現象を「設計」するための基礎となります。また、先端技術においてしばしば見られる、熱流体物性や界面などマクロなモデルが破綻する極限的な現象に対しても、分子運動レベルの熱流体解析は極めて有効です。応用分野では、MEMS/NEMS技術と結びついた流体応用技術であるマイクロ/ナノフルイディクスとして、バイオ関連技術や生体内の微細な熱・物質輸送のメカニズムに学んだバイオミメティクス流体機械の展開につながります。 分子熱流動研究分野では、分子からMEMS/NEMSのスケールにおける熱流体現象の理解を深め、その応用を探ることを目的として、研究を進めています。 Analysis of thermal and fluid phenomena based on the molecular dynamics theory leads to understanding of fundamental mechanism of the phenomena, and ultimately, to the design of thermal and fluid phenomena that are needed in the cutting-edge area in modern technologies. Also the molecular-scale analysis is effective for thermofluid phenomena in extreme conditions in which macroscopic models such as thermophysical properties and the concept of interface are no longer valid. In the application field, micro/nanofluidics is now expanding rapidly especially for the field of biotechnology, which is based on the micro/nanoscale thermal and fluid engineering supported by the recent progress of the MEMS/NEMS technologies. Realization of the mechanism of nanoscale thermal and mass transport in living body in biomimetic fluid machines is one of the most promising fields in the area of micro/nanofluidics. The molecular heat transfer laboratory is engaged in the research to analyze micro/nanoscale thermal and fluid phenomena, from the molecular scale to the MEMS/NEMS scale, and pursue the application of it. #### 流体の構造と熱・運動量の分子スケール輸送特性 流体、特に液体中には様々な構造が存在し、その動特性が液体中の輸送現象、すなわち熱・運動量・物質の移動を支配しています。液体中の構造を解析し、その構造の輸送特性を解析することにより、なぜその液体の輸送物性値はその値なのか、希望の輸送物性値をもつ流体はどのような分子構造をもっているのか、などの疑問を 解明します。また、脂質分子が水中で形成する二重膜構造(生体細胞膜のモデル)など、液体中に発現するナノスケールのヘテロ(不均一)な構造とそこで発現する非等方的熱物質輸送現象を解析し、新しいナノスケール熱物質輸送デバイスの材料として応用するための基礎研究を行っています。 #### Study on Fluid Structure and Transport Characteristics of Energy and Momentum Fluids, especially liquids, contain various structures of which dynamic characteristics governs transport phenomena in liquids, i.e., transport of mass, momentum and thermal energy. Analysis of liquid structures and their transport characteristics gives a thorough answers for some questions such as why the liquid have its magnitude of
thermophysical properties and how the molecular structure should be to realize a liquid having desired thermophysical properties. Another point of this study is heterogeneous structures such as bilayer of lipid molecules organized in water (model for cell membranes of living body). Anisotropic transport phenomena that arise in such heterogeneous structures are analyzed as a basic study for novel materials of nanoscale thermal and mass transport devices. Molecular-scale heat path in liquid ethylene glycol Lipid bilayer membrane in water 日本語 #### 固液界面における熱・物質輸送特性 固体・液体が接する界面における熱と物質の輸送現象は、NEMS や多孔質体など微細構造をもつ系の総括的特性を支配しています。また、半導体製造工程のウェットプロセスなど微細加工に利用され、製品の成否を決定する鍵となっています。界面近傍の液体中に固体表面の影響を受けて発現する特異な構造や、固体分子一液体分 子間のエネルギーの伝搬を解析する分子動力学シミュレーション により、現象のメカニズムを明らかにするとともに、必要な界面特 性を発現する分子及び微細構造を探索するための基礎研究を行っ ています。 #### **Heat and Mass Transfer Characteristics at Solid-Liquid Interfaces** Heat and mass transfer at interfaces where solids and liquids contact governs overall characteristics of nano-structured systems such as NEMS and porous materials. The phenomena are utilized in nano-fabrication process such as the wet process for semiconductor devices. Molecular dynamics simulation analyzes anomalous structures in liquids in the vicinity of solid surfaces produced under the influences of solid surfaces and intermolecular energy transfer between solid and liquid molecules, which clarifies mechanism of the phenomena. Basic studies to seek molecules and nanostructures which exhibit required interface characteristics are also performed. Liquid water-solid platinum ### 液体分子の熱エネルギー伝搬特性データに基づく熱媒流体の設計 エネルギーの高効率利用や熱機器の高機能化において、機器内外を流動し熱エネルギーを運搬する熱媒流体は大きな役割をもっている。分子を構成する様々な官能基など原子あるいは原子群がなす力学的エネルギー伝搬への寄与を解析し、それらが集積して発現する熱エネルギー伝搬特性に関するデータに基づいて、様々 な使用条件に対して最適化され最高の性能を発揮する熱媒を実現する分子がどのようなものであるかを知るのが、本研究の目的である。 固体において実現している材料設計のアプローチを流体の熱流動特性に対して確立するのが目標である。 ### Design of Novel Thermal Fluids Based on the Thermal Energy Transfer Data of Liquid Molecules Thermal fluids, which flow and transport thermal energy in devices, are playing a major role for highly efficient usage of thermal energy in sophisticated thermal devices. The aim of this study is to know the structure of molecules for thermal fluids which are optimized for specific conditions and give the best performance. This is accomplished based on the data concerning thermal energy transport in fluids, which are obtained by analyses of mechanical energy transfer due to dynamic motions of molecules and functional groups in molecules. Our goal is to establish the design approach of thermal and flow characteristics for fluids, just like solid materials that has been established in these days. イオン液体 デカノール液体 # 量子ナノ流動システム研究分野 Quantum Nanoscale Flow Systems Laboratory 徳増 崇 Professor Takashi Tokumasu 流体の流動現象には、原子・分子のスケールで生じる「化学反応」が流体のマクロな「拡散現象」に大きく影響する場合がしばしば見受け られます。また、水素のように極めて軽い原子は、その原子を質点として見なすことができず、その影響が物質の相図などに現れることが あります。このような性質が現れるメカニズムを解析したり、これらの物質で構成されているナノスケールの流動システムの挙動を解析 する場合、通常の分子動力学法ではその性質を正確に再現できないため、この物質の「量子性」を考慮した手法を用いて解析する必要があ ります。本研究分野では、このような流体の「量子性」が熱流動現象に影響を及ぼす系を対象にして、その量子効果を取り込んだ様々な手 法を用いてその性質を解明し、工学的に応用することを目的として研究を行っています。 In the flow phenomena of fluid, it is often seen that the "chemical reaction" which occurs at the atomic/molecular scale affects much on the macroscopic "diffusion phenomena" of fluids. Moreover, very light atoms, such as hydrogen, cannot be regarded as a mass point and its effect sometimes appears at the phase diagram of this substance. When we analyze the mechanism by which the characteristics appears or behaviors of nanoscale flow systems which consists of such substances, it is necessary to analyze them by the method in which the "quantum effect" of the substances is considered because the conventional molecular dynamics method cannot treat such characteristics accurately. This laboratory treats the system in which the quantum effect of such fluid affects on the flow phenomena, and conducts research on clarification of its physical mechanism by various methods with considering the quantum effect and its application for engineering aspects. #### 流体の量子性が熱流動特性に与える影響に関する量子・分子動力学的研究 水素分子は酸素や窒素といった二原子分子に比べて質量が軽く、 そのため不確定性原理により原子位置を正確に特定できなくなり ます。この水素原子の量子性のために液体水素の熱物性値は対応 状態原理からはずれた挙動を示します。また化学反応を伴う流れ は半導体製造プロセスなど、工業的によく見られますが、このよう な流れ場では化学反応に伴うエネルギー変化が流動現象に多大な 影響を与えます。このような流れ場に対し、流体の量子性を考慮し、 その量子性がマクロな物性値に影響をおよぼすメカニズムについ て解析を行っています。 #### Quantum/Molecular Dynamics Studies of the Effect of Quantum Characteristics of Fluids on Its Flow Characteristics Hydrogen molecule has a light mass compared with conventional diatomic molecules such as nitrogen or oxygen, and therefore the position of hydrogen molecule cannot be determined by uncertainty principle. Due to the quantum effect of hydrogen molecule, the thermodynamic properties of liquid hydrogen is not consistent with the principle of corresponding state. Moreover, flow phenomena with chemical reaction are often seen in industrial situations, such as semiconductor fabrication process. In these flow field energy change following chemical reactions affects much on flow phenomena. We analyze the mechanism by which the quantum characteristics of molecules affect on the macroscopic flow phenomena of fluids using methods in which the quantum characteristics of fluids are consid- 反応性分子動力学法による CVD 成膜シミュレーション CVD simulation by reactive force-field molecular dynamics methods 固体電解質内 Li イオン拡散の量子・分子動力学シミュレーション Quantum molecular dynamics simulation of Li ion diffusion in the solid electrolyte 本語 Englis ### 第一原理計算を用いた水素吸蔵合金の特性解明と安全性向上に関する研究 水素吸蔵合金は、水素を利用したクリーンで持続可能な次世代エネルギーシステムを支える新素材として注目されています。この材料は、複数の原子で構成される金属結晶を内部に持つ耐久性の高い容器に、水素ガスを物理的および化学的に貯蔵し、運搬後に必要な場所で再び水素を放出することが可能です。この特性により、水素吸蔵合金は、気体のままでは扱いが難しい水素の貯蔵効率を大幅に向上させ、安全性を高める役割を果たします。しかし、社会インフラとしての実現には、さらなる効率化やコスト削減、安全 性向上といった課題が残されています。 本研究では、「どの金属原子が、どのような結晶構造を持ち、どのように水素と結合・乖離するのか」という問いを解明するため、第一原理計算を活用し、詳細な解析を行っています。この手法では、物質を構成する原子や電子の相互作用を量子力学に基づいて精密に計算することが可能であり、未知の材料特性や反応メカニズムを理論的に予測できます。これにより、高性能・高貯蔵能力・高い安全性を備えた次世代型水素吸蔵合金の新規開発を目指しています。 #### Research on the Characterization and Safety Enhancement of Hydrogen Storage Alloys Using DFT Calculations Hydrogen storage alloys (HSAs) is key to clean energy systems, capable of storing hydrogen physically and chemically in durable containers filled with metallic crystals with multiple atomic species forming hydrides. However, the practical implementation of hydrogen storage alloys in societal infrastructure requires overcoming several challenges, including further efficiency improvements, cost reductions, and enhanced safety. This study utilizes first-principles calculations to address fundamental questions, such as: "Which metal atoms form specific crystal structures, and how do these structures interact with hydrogen during adsorption and desorption processes?" This computational methodology enables the precise modeling of atomic and electronic interactions within materials, grounded in quantum mechanical principles. Consequently, it facilitates theoretical predictions of previously unexplored material properties and reaction mechanisms. The overarching aim of this research is to develop next-generation hydrogen storage alloys characterized by superior performance, high storage capacity, and enhanced safety. 上:水素吸蔵合金 (Mg²Ni) が水素を吸蔵する過程 下:結晶構造内のラジカル攻撃を可視化(赤いほど反応性が高い) Top: The process that hydrogen storage alloy (Mg^2Ni) absorbs hydrogen Bottom: Visualization of radical attack within the crystal structure (the more red, the more reactive) ## 原子層堆積法および化学気相堆積法における成膜メカニズムの分子動力学的研究 半導体製造プロセスには成膜、エッチング、洗浄など、複数のプロセスが存在しますが、中でも成膜プロセスに対してはウェーハ上において膜厚誤差±0.5Aという原子層レベルの制御が求められています。このような最先端の需要を実現可能な成膜手法として化学気相堆積(CVD: Chemical Vapor Deposition) 法および 原子層堆積(ALD:Atomic Layer Deposition)法が広く利用されています。ただし、それらの成膜現象は拡散現象および反応現象が複雑に絡み合っており詳細に理解することが困難です。そのため本研究では、両者を融合した反応性力場分子動力学シミュレーションを実施し、成膜メカニズムの普遍的な理解を目指しています。 #### Molecular Dynamics Study of Deposition Mechanism on the Atomic Layer Deposition and Chemical Vapor Deposition Methods In the semiconductor manufacturing process, there are some processes such as thin film formation, etching, cleaning etc. Especially in the thin film formation process, The thickness of a film on a waterhave to be controlled with the accuracy of ± 0.5 A, which is the order of the layer of atoms. The chemical vapor deposition (CVD) and atomic layer deposition (ALD) are widely used as thin film formation methods for realizing such a state-of-the-art demand. However, these thin film formation phenomena are a complex combination of diffusion phenomena and reaction phenomena, and it is difficult to understand in detail. Therefore, we carry out reactive force field molecular dynamics (ReaxFF MD) simulations and aim at a universal understanding of the deposition mechanism in this research. 量子化学計算による構造最適化およびエネルギー計算 Structure optimization and energy calculation by quantum chemistry calculations CVD 成膜シミュレーション (SiH_2 のみ供給) CVD simulation (Supply only SiH_2) # 生体ナノ反応流研究分野 Biological Nanoscale Reactive Flow Laboratory 教授 佐藤岳彦 Professor Takehiko Sato ^助 教 劉 思維 Assistant Professor Siwei LIU 本研究分野では、大気圧における低温プラズマの流れは、熱、光、化学種、荷電粒子、衝撃波などの生成や輸送が簡便に行えるため、これらの特徴を利用したプラズマ医療や気泡内帯電気泡の研究を進めています。また、ナノメートルスケールの水の液滴を生成し、高速で衝突させることで、わずかな水のみで濡らさずに低温で洗浄・殺菌する技術の開発を進めています。このように、プラズマの流れと生体の相互作用やナノ流動現象について明らかにし、最先端プラズマ医療技術や革新的水利用技術の基礎学理の構築ならびに社会実装をすすめ、国民の健康を守る次世代技術の創成を目指しています。 Low-temperature plasma flow at atmospheric pressure can easily generate and transport heat, light, chemical species, charged particles, and shock waves. Leveraging these capabilities, we are conducting research on plasma medicine and charged bubbles. Additionally, we are developing technology to generate nanometer-scale water droplets and accelerate them to high speeds for cleaning and sterilizing at low temperatures, without wetting, using only a small amount of water. Through these researches, we are investigating the interactions between plasma flow and living organisms, and nano-fluid phenomena. Our goal is to advance the fundamental science
and promote the societal implementation of cutting-edge plasma medical technologies and innovative water utilization methods, ultimately creating next-generation solutions to protect human health. ### プラズマ医療の開拓:プラズマ流の刺激による生体応答の解明 最先端プラズマ医療の基礎と応用を進めています。プラズマによるがん細胞の活性化や不活性化に関する研究では、これまでは、プラズマにより生成される化学的活性種の効果が注目されていました。当研究室では、効果の強い化学種の影響を取り除いた電気的 効果や紫外線による効果や化学種と電気や紫外線による相乗効果を明らかにするため、細胞応答の観察とその詳細な解析をおこなっています。 # Cutting-Edge Plasma Medicine: Regulating Cellular Responses through Plasma Complex Stimulation We are advancing the fundamental principles and applications of cutting-edge plasma medicine. While research on the activation or inactivation of cancer cells through plasma has primarily focused on the effects of chemically active species generated by plasma, our laboratory takes a different approach. We investigate cellular re- sponses in detail, aiming to clarify the impact of electrical and ultraviolet radiation-isolating these effects from the influence of powerful chemical species. Additionally, we explore the synergistic effects of chemical species, electricity, and ultraviolet radiation. ナノ秒パルス電流によるアクチンフィラメント形成の様子 Formation of actin filament by exposure to nanosecond pulsed currents ナノ秒パルス電流刺激によりがん細胞が伸長している様子 Elongation of cancer cells by exposure to nano-second pulsed current 日本語E ## 高速ナノ液滴が拓く革新的水利用:わずかな水のみで濡らさず低温で洗浄・殺菌する技術 水蒸気を混合させた加圧空気をノズルから噴出させ、凝縮により高速のナノメートルスケールの水の液滴を生成させることで、 わずかな水のみで濡らさずに洗浄・殺菌できる機能を発現することを発見しています。写真は、従来の抗菌処理(左)と高圧ガス噴射 処理(中)、高速ナノ液滴処理(右)で殺菌除去したバイオフィルム 産生菌の様子で、高速ナノ液滴により洗浄・殺菌できることを明ら かにしました。高速ナノ液滴の特性と洗浄・殺菌メカニズムを明ら かにし、実用化を進め社会実装することを目指しています。 #### Innovative Water Use with High-Speed Nanodroplets: A Technology for Cleaning and Sterilizing at Low Temperatures with Minimal Water and No Wetting We have discovered that by jetting pressurized air mixed with water vapor through a nozzle, generating high-speed nanometer-scale water droplets via condensation, we can clean and sterilize surfaces without causing wetting, using only a small amount of water. The photographs show biofilm-producing bacteria that have been sterilized and removed by high-speed nanodroplet treatment (right) though a conventional antimicrobial treatment (left) and high-pressure gas injection treatment (middle) are not capable of sterilization and removal. Our goal is to understand further the characteristics of high-speed nanodroplets and their mechanisms of cleaning and sterilization, as well as to advance their practical application and societal implementation. 人工血管上に形成したバイオフィルム産生黄色ブドウ球菌の抗菌処理 (左) と高圧ガス噴射処理 (中)、高速ナノ液滴処理 (右) 後の SEM 画像。 (写真:東北医科薬科大学 藤村茂教授 提供) SEM images of biofilm-producing Staphylococcus aureus on artificial blood vessels after antimicrobial treatment (left), high-pressure gas injection treatment (middle) and high-speed nano-droplet treatment (right). (Photo: Courtesy of Professor Shigeru Fujimura, Tohoku University of Medical and Pharmaceutical Sciences) ## 帯電キャビテーション気泡生成とダイナミクス解明ならびにその最先端応用 レーザーで誘起したキャビテーション気泡内でプラズマを発生させ、今まで計測が困難であった気泡中の圧力や特性を明らかにすることを目指しています。また、プラズマ発生による気泡内への 帯電は、気泡収縮過程で大きな電気的な力や高電界を形成するため、微小高エネルギー源や新しいバイオ・医療応用などの新しい機能を活用する手法の開発に取り組んでいます。 ### Elucidating the Generation and Dynamics of Charged Cavitation Bubbles and Their Cutting-Edge Applications The goal of this project is to generate plasma in laser-induced cavitation bubbles in order to clarify the pressure and characteristics of these bubbles, which have been challenging to measure until now. The plasma-induced charging within the bubble creates a significant electrical force and a high electric field during the bubble contraction process. We are focused on developing methods to harness this new functionality for micro high-energy sources and innovative bio/medical applications. 帯電レーザー誘起キャビテーション気泡のダイナミクス。印加電圧5kV(放電あり)と印加電圧なし(放電なし)の時間経過画像。 Dynamics of the charged laser-induced cavitation bubble. Selected frames of an image sequence with the applied voltage of 5kV (with discharge case) and no applied voltage (without discharge case). # 分子複合系流動研究分野 Molecular Composite Flow Laboratory 小原 拓 Concurrent Professor Taku Ohara 准教授 菊川 豪太 Associate Professor Gota Kikugawa ナノスケールからマクロスケールに渡る多くの工業・産業プロセスにおいては、分子レベルの物理が複合的に関与する熱流動現象が数 多く見られます。特に、デバイス表面での放熱性能の向上による次世代半導体デバイスの限界性能向上、熱流動特性や機械特性の最適化 による新規高分子素材の探索・設計には、界面での熱流動特性や不均質媒体における分子スケール構造と輸送特性の相関など、複合的な 視点での現象理解が不可欠です。そこで、分子動力学法をはじめとした大規模数値シミュレーションにより、熱流体工学におけるミクロ スケールの熱・物質輸送現象およびマクロな熱流体物性を支配するミクロスケールメカニズムの解明を目指しています。また、複数のスケー ルに渡る数値解析技法の統合によってマルチスケール性を有する熱流動現象の解明を行います。これらの知見を基盤とすることで半導体 プロセス、高分子素材開発等の関連産業へ貢献することを視野に研究を進めています。 From nanoscale to macroscale, various thermal and fluid phenomena, to which composite molecular-scale physics gets engaged, are of critical importance in the wide range of engineering and industrial processes. In particular, an essential understanding of these phenomena is indispensable to exploit the limit performance of next-generation semiconductor devices by improving thermal dissipation from the device surface or to explore and develop novel polymeric substances by optimizing thermal and fluid properties as well as mechanical properties. By using large-scale numerical simulations such as the molecular dynamics method, we investigate heat and mass transfer phenomena in the thermal and fluid engineering from the microscopic viewpoint. The underlying microscopic mechanisms governing macroscale thermofluid properties are examined as well. Integrating numerical analysis methods which can cover multiscale physics, we aim to investigate thermal and fluid phenomena having multiscale aspects. Based on this knowledge, industrial applications such as semiconductor processes and development of polymeric materials are explored. ## 有機分子膜による表面修飾の研究 自己組織化単分子膜(self-assembled monolayer、SAM)をは じめとした分子スケールの表面修飾技術は、固体表面の物理化学 的特性を制御する技術として、種々のプロセスやデバイスへの応 用が進んでいます。特に、有機分子の自己組織化や薄膜状態での 自発的構造形成を利用してボトムアップにより表面修飾を行う技 術は、柔軟かつ適応性の広い方法として期待されています。これら 有機分子膜の構造形成や界面親和性、界面を介した熱・物質輸送特 性は、工学応用上極めて重要であり、その輸送機構を明らかにする ことを目的に研究を行っています。 #### Surface Modification Using Organic Molecular Films Novel surface modification techniques at the molecular level such as the self-assembled monolayer (SAM) have drawn attention as the technique to control the physical and chemical properties on solid surfaces. In particular, the bottom-up processes, i.e., surface modification by utilizing the self-assembling of organic molecules or spontaneous structurization in organic thin films, have future pos- sibilities due to their flexibility and adaptability. Structure formation, interface affinity, and heat and mass transport characteristics of organic molecular films have a critical importance in the engineering and industry. Therefore, we investigate the underlying microscopic mechanisms governing these significant characteristics. Self-assembled monolayer facing with organic solvent 本語 Engl ### 高分子材料の熱流動特性 産業的にも広く利用が進んでいる高分子材料の開発には、内部の分子スケール構造や相分離構造の制御によって、力学的・化学的特性のみならず熱流動特性を設計することが必要とされています。例えば、高温等の極限状態で利用される架橋構造を有するポリマー樹脂は、宇宙往還機表面に使われるアブレーション材料など、分子 の内部構造の変化・崩壊に伴う機械的・熱的特性の変化を予測する ことが極めて重要な課題となっています。分子スケールからマクロスケールに至るスケール複合的な解析手法やデータ科学の技術 を利用して、有用な熱流動特性や機械特性を有する高分子材料の 探索・設計を目指しています。 #### **Thermal and Fluid Properties of Polymeric Materials** As for development of polymeric materials which have extensively been utilized in industry, designing thermofluid properties as well as mechanical and chemical properties by controlling the molecular-scale structure and phase separation structure inside the material is being required. For example, it is a critical issue to predict the variation in mechanical and thermal properties of polymeric resins having crosslink bonds which is induced by the change of molecular structure when exposed to the extreme environment, e.g., ablation materials in space planes. Using integrated numerical analyses covering molecular-scale to macroscale phenomena and data-driven informatics techniques, we aim to explore and design polymeric materials which have valuable thermofluid properties and mechanical properties. Molecular structure of amorphous polystyrene Clustering of thermophysical properties of liquids ## 不均質媒体/制限空間内の流体における輸送現象 流体やソフトマター界面、ナノスケール構造によって形成される制限空間内の閉じ込め液体においては、界面近傍における液体中の不均質(ヘテロ)な構造発現に伴い、特異な熱・物質輸送特性が現れます。これらは、多孔質体やナノ細孔、生体高分子を介した物質移動などナノ・バイオ工学レベルで広く重要な要素となっています。本研究を通じて、界面近傍における閉じ込め液体の分子輸 送特性が、均質なバルク液体中と大きく異なることや流体力学的 効果によって分子拡散現象が強く影響を受けることが明らかになっ ています。分子スケールにおけるヘテロな構造や輸送現象の本質 的理解と、それらに基づくマクロな熱流体解析への橋渡しとなる 物理モデルの構築を目指しています。 ## Transport Phenomena in Heterogeneous Media and Confined Liquids At the fluid and soft matter interfaces or inside the confined liquid in nanoscale structures, peculiar heat and mass transfer characteristics emerge as a consequence of heterogeneous structure formation inside a liquid in the vicinity of the interfaces. These phenomena are directly relevant to the wide field of nano- and bioengineering, e.g., molecular transport through mesoporous materials and biomolecules. This study elucidates that the molecular transport in confined liquids is significantly different from that in the homogenous bulk liquids and that the molecular diffusion is highly affected by the hydrodynamic effect induced by the molecule itself. Our goal is an essential understanding of heterogeneous structure and corresponding transport phenomena at the molecular level and building physical models which can bridge macroscopic thermal and fluid analyses based on the microscopic knowledge. Instantaneous structure of water surface Anomalous diffusivity of liquids in the periodic rectangular parallelepiped system # 生体分子流動システム研究分野 Biomolecular Flow Systems Laboratory 徳増 崇 Concurrent Professor Takashi Tokumasu 馬渕 拓哉 Associate Professor Takuya Mabuchi 小さな分子、特にイオンが複雑に入り組んだ構造の中を輸送するとき、どのような経路を輸送し、どのくらいの速さで(伝導・拡散)する ことができるのか?ナノスケールの世界で起きているイオン輸送現象は、生体内においてもエネルギー活動の本質を担うイオンチャネル と呼ばれる生体分子によって緻密に制御されています。本研究分野では、こういった実験では見ることの難しい時空間スケールにおける「ナ ノ流動現象」を理論(分子シミュレーション)を用いて解明し、高活性・高選択性などの高機能な人工分子の理論設計を行うことで、人工細 胞や分子システムを構築する工学的応用から創薬などの医療応用まで幅広い展開を目指しています。 生体分子システムで起きている幅広
い時空間スケールのダイナミクスを時空間スケールの異なる計算手法、特に分子動力学(MD: Molecular Dynamics)法を基盤としたマ ルチスケールシミュレーション技術を用いて解析しています。量子化学計算や反応MDを用いたnmスケールの化学反応およびイオン輸 送現象から粗視化MDを用いたμmスケールのタンパク質高次構造(液液相分離構造)形成現象までマルチスケールの動的現象に興味を持っ ています。 The research involves theoretical and computer simulation studies of biomolecular systems. Current research activities span both development of new computational methods and theoretical characterization of proton transport and protein phase behavior in biomolecular systems at multiple length scales. For example, to probe complex transport phenomena of protons, a reactive model has been developed within the simplicity of the theoretical framework of classical molecular dynamics (MD) simulations. Proton transport through complex structure such as transmembrane ion channels are one of our research interests. Protein phase behavior (i.e, aggregation, self-assembly, and liquid-liquid phase separation) in aqueous solutions are also of our research interest. Computational studies can assist in the challenge of designing the artificial ion channels. Our research is thus often carried out in close collaboration with leading experimentalists and is integrated in a feedback loop with experiments. ## ナノポア内における化学反応を伴うプロトン輸送機構 プロトン(H⁺)や水酸化物イオン(OH)の輸送は、他のイオンと 異なり、Grotthuss機構と呼ばれる水分子との化学反応を伴う複 雑な機構を考慮する必要があります。さらに、これらのイオンはナ ノポアに閉じ込められたナノスケールの水の水素結合ネットワー クを移動するためドメイン構造や輸送機構に大きく起因し、実験 やマクロスケール解析によって輸送現象を理解することは困難です。 そこで、本研究では量子化学計算の結果を基に独自に構築した反 応MDモデルを用いて、水ドメイン構造とイオン伝導メカニズム との相関を明らかにします。 #### Reactive Transport Mechanisms of Protons in Nanopores Transport of protons (H⁺) and hydroxide ions (OH⁻) requires consideration of a complex mechanism involving chemical reactions with water molecules, known as the Grotthuss mechanism, unlike other ions. Additionally, these ions move through water hydrogen bonding networks that are significantly influenced by confined pore structures, making them difficult to understand experimentally. Therefore, in this study, we utilize reactive molecular dynamics simulations based on quantum chemical calculations to elucidate the correlation between water domain structures and ion conduction mechanisms. Proton transport via Grotthuss mechanism Anticorrelation between Grotthuss and vehicle diffusions 日本語 English #### 選択的透過機能を有する人工イオンチャネル DNAオリガミ技術(DNAナノテクノロジー)を用いて、選択的イオン透過機能を有する人工イオンチャネルの構築を目指しています。 DNAを材料とした人工チャネルでは、DNAの塩基配列を設計することでチャネル構造を自在に設計できるため製作法として自由度が高く、理論的設計指針に基づいて柔軟に設計・製作が可能です。 実験グループと協力しながら、実験・理論の両面から人工チャネルの設計を行っています。 分子シミュレーションを用いて、DNAチャ ネル内部の細孔径の調整や修飾分子により透過分子の選択性を制御したり、脂質二重膜(リポソーム)への結合安定性を評価したりし、理論的に設計指針の最適化を行っていきます。本研究は、イオンチャネルが関係する難治性疾患の治療法や物質貯蔵の増進から環境浄化材料の開発まで様々な工学的応用技術の確立に繋がることが期待できます。 ### **Development of Artificial Ion Channels with Selective Permeability** We aim to construct artificial ion channels with selective permeability using DNA nanotechnology. This technique allows for precise design of the channel structure by engineering DNA base sequences, offering a high degree of flexibility in fabrication design. Through molecular simulations, we investigate not only the transport mechanisms of small molecules within DNA nanopores but also the stability and dynamics of membrane-spanning DNA nanopores to lipid bilayers (liposomes). This research has the potential to establish various engineering applications, ranging from the treatment of intractable diseases related to ion channels to enhancing substance storage and developing environmental remediation materials. Molecular simulations of membranespanning DNA nanopore Liposome formation using coarse-grained molecular simulations ## 人工タンパク質を用いた液-液相分離構造形成現象 タンパク質やRNAが自己集合することで液-液相分離し、細胞内に液滴やゲル状の構造体を形成することが知られています。細胞は、生体分子を液滴にすることで、転写、翻訳、シグナル伝達など、様々な生命現象を調節していると考えられています。本研究は実験グループとの共同研究であり、エラスチン様ポリペプチド(ELP: Elastin-like polypeptides)など相分離するタンパク質を基盤材料として人工分子を理論的に設計します。細胞内相分離のボトム アップ的な理解を進めると同時に、特定の分子を液滴に閉じ込めることで細胞内の狙ったタンパク質の機能を制御する手法の開発を目指しています。本研究は物質の選択・分離や濃縮技術と直結し、幅広い産業への応用が可能です。例えば、酵素濃縮による活性亢進によって、食品長期保存や医薬品タンパク質の効率的な合成などへの展開が期待できます。 #### **Liquid-Liquid Phase Separation Using Artificial Polypeptides** Biomolecules such as proteins and RNA are known to undergo liquid-liquid phase separation, forming liquid droplets or gel-like structures within cells through self-assembly. It is believed that cells regulate various life phenomena such as transcription, translation, and signal transduction by converting biomolecules into liquid droplets. We focus on theoretically designing artificial coacervates using artificial proteins, such as elastin-like polypeptides (ELPs), to encapsulate specific molecules into liquid droplets. This research is closely linked to material selection, separation, and concentration technologies, with broad applications across industries. For example, enzyme concentration could enhance activity, leading to applications in long-term food preservation and the efficient synthesis of pharmaceutical proteins. Elastin-like polypeptides (ELP) coacervate formation RNA partitioning in the ELP coacervate # グリーンナノテクノロジー研究分野 Green Nanotechnology Laboratory 遠藤 和彦 Professor Kazuhiko Endo 特任教授 寒川 誠二 Specially Appointed Seiji Samukawa 大堀 大介 Assistant Professor Daisuke Ohori 現代社会にとって安全で安価なエネルギーの確保やエネルギーの効率的利用は重要な問題です。この問題を解決し、エネルギー技術立 国を目指すため、革新的グリーンナノデバイスの研究を行っています。 具体的には、低消費電力デバイス(量子ドットレーザー・新チャネ ル材料トランジスタなど)やこれらを合わせたナノエネルギーシステムの開発を行っています。これらのナノデバイスを作製するためには、 ナノ構造を正確にダメージなく作製し、物質や量子ナノ構造の持つ本来の特性を引き出すことが必要です。本研究室の基盤技術である超 低損傷プラズマ・ビームプロセスやバイオテクノロジーを用いた極限加工などの独自の原子層制御ナノプロセスを駆使することによって 初めて、そのようなデバイスの実現が可能となります。 Securing safe and less-expensive energy and efficient utilization of energy are important issues confronting modern civilization. To clarify these issues and aiming at founding a Japanese nation based on energy technology, we are promoting studies of innovative green nano-devices. Particularly, we have been developing low power consumption devices (such as quantum-dot lasers, New channel material transistors) and nano-energy systems, which are a combination of these elements. For manufacturing of these nano-devices, nano-structures should be produced accurately and without defects. The original properties of materials and quantum nano-structure should be extracted. This sort of processing is made possible only after intelligent nano-process technologies such as beam process and bio-template and ultimate top-down etching technology, which are the background of this research laboratory, are fully used. ## 超低損傷プロセス技術 我々が開発した中性粒子ビームにより世界に先駆けた原子・分 子レベルの低損傷・超高精度ナノ加工技術、高機能薄膜材料形成技 術、あるいは各種表面処理技術の開発を行い、「グリーンナノデバ イス」の実現を目指しています。さらに、これらの技術とバイオテ クノロジーの融合による新機能デバイス(量子ドット太陽電池やレー ザー、熱電変換素子、脳型処理デバイスなど)の開発や、三次元構 造トランジスタ・燃料電池電極の開発などの次世代デバイスの研 究を行っています。 #### **Damage-Free Processes** Based on neutral beam technology (invented by Prof. Samukawa), ultra-precise nanofabrication are developed with excellent performance of ultra-low damage, including etching, deposition, surface modification, etc.. Our goal is to realize "Green Nanotechnology". Furthermore, we combine bio-technology with our nano-technology to develop new functional devices, such as quantum dot solar cell, quantum dot laser, spike neuron device, thermoelectric devices, etc.. Additionally, we work on, 3-dimensional MOSFET, Graphene based catalytic electrodes, etc., as the next generation devices. ## バイオテクノロジーとナノテクノロジーの融合による新たなプロセス バイオテンプレートと中性粒子ビームを組み合わせることで、全く新しい量子ナノ構造作製法を確立しました。蛋白質は生体中でDNA遺伝情報に基づき合成されるため、原子レベルで均一で、かつ安価に大量に得られます。また、自己組織化能力を持ち規則的 に配置させることができます。これをテンプレートとして用い、中性粒子ビームを用いて所望の材料をエッチング加工することで、サイズ可変・均一・高密度で規則配置した量子ドット配列を得ることができます。 #### **Fusion of Biotechnology and Nanotechnology** Entirely new process has been established by combining bio-template and neutral beam. Bio-super-molecules are synthesized using DNA information. As a result, the size and structure is completely reproduced in atomic level. Also, by using self-assemble ability of bio-super-molecules, regular arrangement is possible with very low cost. Then, neutral beam etching can transfer the template pattern to the substrate to obtain size-controllable, uniform, high-density, regularly-arranged array of quantum dots with any materials. #### さまざまなデバイスへの展開 バイオテンプレート技術と無欠陥中性粒子ビーム技術の融合による革新的なトップダウンプロセス加工により、高密度・無欠陥なナノアレイ構造形成に成功しました。この手法により、フォノンを制御することで、半導体デバイスのチャネルにおける電子移動度 の低下を抑制します。さらに、新たなガスケミストリーを用いて高速低欠陥なマイクロLED加工や、低い活性化エネルギーを利用することで低温で高品質な酸化膜形成を実現するなど、最先端半導体デバイスへの応用と新たな物理の解明に注目されています。 #### **Application for Novel Devices by Neutral Beam** An innovative top-down method, a fusion of bio-template and damage-free neutral beam etching, can fabricate highly ordered and dense nano-structure arrays without defects. It has the excellent potential of phonon-controlled MOSFET. Moreover, neutral beam etching can achieve high-quality micro-LED fabrication and low-temperature oxide film formation. # 高速反応流研究分野 High Speed Reacting Flow Laboratory (兼)教授 小林 秀昭 Concurrent Professor Hideaki Kobayashi 早川 晃弘 Associate Professor Akihiro Hayakawa 特任准教授 K. D. Kunkuma A. **SOMARATHNE** Specially Appointed Associate Professor 特任助教 Yi-Rong CHEN Specially Appointed Assistant Professor 特任助教 伊藤 尚義 Specially Appointed Assistant Professor Hisayoshi Ito 環境・エネルギー分野の代表課題である燃焼は、温度、濃度、速度、高温科学反応といった多次元のダイナミックスが複合した現象です。 本研究分野では、複雑な燃焼現象の解明、次世代融合研究手法による高速燃焼診断法および解析手法の研究開発を行い、これらの一体化 によって環境適合型燃焼法および燃焼予測、制御技術の高度化を目指しています。特に、高温・高圧環境における乱流燃焼、廃棄物や燃料 液滴などの不均衡質燃焼、超高速燃焼の基礎現象解明と制御法の開発に取り組んでいます。 Combustion is a complex phenomenon composed of multi-dimensional dynamics of temperature, concentration, velocity, and chemical reactions. And also advanced combustion technologies are essential for solving the environmental and energy problems. Our laboratory focuses on investigation of combustion phenomena, development of diagnostics and analysis method. Projects on turbulent combustion at high pressure and high temperature, heterogeneous combustion such as fuel spray and wastes, and controlling of supersonic combustion are in progress. ## 燃焼の科学と高効率エネルギー技術 現代のエネルギー技術の中核にある燃焼技術は、反応性気体力 学のより深い研究を基盤としながら、環境負荷を最小にする燃料 開発や燃焼システムの一層の高効率化が求められています。ガス
タービンシステムへのアンモニアや次世代バイオ燃料利用を想定 した高温高圧下の乱流燃料の研究を高度なレーザー計測技術を駆 使して行っています。 ### Combustion Science and Highly Efficient Energy Technology Combustion as a core of energy technologies today requires development of new fuels and further increase in thermal efficiency as well as deep understandings of aerothermochemistry. Turbulent combustion mechanism in a high pressure and high temperature environment for highly efficient energy systems is investigated using advanced laser diagnostics. Direct Photo OH-PLIF image Flame surface density 高圧下の CO/H²/air 乱流予混合火炎 CO/H²/air tubulent premixed flame at high pressure ## 超音速燃焼における火炎構造解明 超音速流における混合・燃焼・衝撃波干渉現象は、次世代推進系開発の基礎であると同時に、極限環境下における高速反応流です。本研究では、OHレーザー誘起蛍光法(OH-PLIF)による燃焼領域の可視化実験を行うと同時に、スーパーコンピュータを用いた数 値計算結果を考慮し、超音速流中のキャビティー保炎器に形成されている火炎の火炎構造や安定メカニズムを明らかにする事を目的として研究を行っています。 #### Flame Structure in Supersonic Combustion Mixing, combustion and interaction of shock wave in supersonic flow are representative high speed reacting flow, and essential study for the development of a scramjet engine. In our laboratory, flame observation using planar laser induced fluorescence for OH (OH-PLIF) and numerical simulation are performed in order to investigate the flame structure and flame holding mechanisms in cavity flame holder in supersonic flow. Experiment (Direct Photo) Simulation (OH concentration) Experiment (OH-PLIF) Simulation (Streamline) ## アンモニア燃焼の基礎特性解明と実用燃焼器への適用 近年、アンモニアは水素エネルギーキャリアとしてのみならず、カーボンフリーであることから次世代燃料としても期待されています。しかしながら、その基礎的燃焼特性は十分明らかではありません。本研究はアンモニア火炎の燃焼速度や燃焼生成ガス特性を 実験および詳細化学反応計算に基づいて検討を行っています。さらにガスタービン、工業炉およびレシプロエンジンへのアンモニア燃焼の適用に向けた研究も行っています。 ## **Investigation of Fundamental Characteristics of Ammonia Combustion** Recently, ammonia is expected not only as hydrogen energy carrier but as also carbon-free fuel. However, its combustion characteristics are not fully understood. In this study, the combustion characteristics of ammonia are investigated based on experiments as well as numerical simulations with detailed chemistry. In addition, flame stabilization mechanism and turbulent combustion are also studied in order to apply the ammonia combustion for gas turbines, industrial furnaces, and reciprocating engines. アンモニア火炎 Ammonia flame 旋回流燃焼器に定在したアンモニア火炎実験と数値計算 Ammonia flame stabilized in a swirl burner experiment and numerical simulation アンモニア/空気予混合火炎の反応経路 Reaction flow of ammonia/air premixed flame # 地殻環境エネルギー研究分野 **Energy Resources Geomechanics Laboratory** 伊藤 高敏 Professo Takatoshi Ito 椋平 祐輔 Assistant Professor Yusuke Mukuhira 特任助教 Wang LU Specially Appointed Assistant Professor 当研究分野では、地球環境問題とエネルギー問題の解決を目指した、地殻の高度利用のための大規模流動現象の解明と予測および制御 に関する研究を行っています。特に、地球温暖化対策の切り札と目される CO。地中貯留、再生可能エネルギーで日本に豊富な地熱、次世代 エネルギー資源として注目されるメタンハイドレートなどに関わる課題について従来にない新たなアプローチで取り組んでいます。 We investigate smart methodologies to know and control large scale fluid flow in subsurface at few km deep, and we apply the methodologies to solve the problems on earth environment and energy. Our works are currently focusing on (i) CO2 geological storage as a means of climate change mitigation, (ii) geothermal energy which is renewable and abundant in Japan, and (iii) methane hydrate seated below deep sea floor, which is expected to be a next-generation energy resource to replace oil and natural gas. #### 石油・メタンハイドレート開発のための未固結地層フラクチャリング フラクチャリング法は、比較的固い地層にある坑井と貯留層の 間に導通性の良い流路を確保し、石油・ガスの生産性を向上させる 技術として開発されました。一方、近年の石油産業は、重質油やメ タンハイドレートなど、在来型の資源に比べて浅く未固結あるい は弱く固結した地層中の資源を開発の対象としつつあります。し かし、未固結地層でのフラクチャリング挙動は未解明であり、新た な理論を構築する必要があります。本研究室では、独自に開発した 実験装置を駆使し独創的な実験的研究とシミュレーションとの両 面から研究を行っています。 ### Study of Hydraulic Fracturing in Unconsolidated Formation for Oil and Methane **Hydrate Development** The technique of hydraulic fracturing has been originally developed, assuming cohesive rocks. On the other hand, recent trends of petroleum industry are directed toward unconventional resources such as heavy oil and methane hydrate in weakly-consolidated to unconsolidated sands. However, the hydraulic fracturing behavior in unconsolidated formation has not been fully understood. To achieve this goal, we are conducting a study to establish the theory of hydraulic fracturing in unconsolidated formation with both experimental and numerical approaches. - (a) 未固結地層内のフラクチャリング挙動を可視化するために独自に作成した実験装置,(b) フラクチャリング実験結果,(c) フラクチャリング実験のリアルタイム CT 可視化画像 - (a) Originally designed apparatus for unconsolidated rock hydraulic fracturing experiment. (b) An example of experiment result. (c) CT scan image of experiment taken in realtime ### コア変形法による地殻応力測定 地熱や非在来型石油・ガス資源の開発では、地下の対象地層にかかっている地殻応力が、流体資源の生産性を決定する重要なパラメータとなります。対象深部地下岩体のボーリングで回収される 地下岩石片(コア)の変形を高精度に測定することで、従来は困難であった地殻応力を直接推定する手法の開発を行っています。 ### Diametrical Core Deformation Analysis (DCDA) for In-Situ Stress Measurements Measurement of in-situ rock stress is a critical parameter for the effective production of geothermal or unconventional hydrocarbon resources. We propose a new method of diametrical core deformation analysis (DCDA) for evaluating the in-situ stress of rocks from an elliptical deformation of boring cores. DCDA is game-changing method since we can directly estimate the magnitude of in-situ stress from simple core diameter measurement. 特別に開発したコア変形測定装置 A newly developed apparatus for measuring circumferential distribution of core diameter 10マイクロメーター精度で測定したコアの変形 (青線) と近似曲線 (ピンク) Circumferential diameter distributions of the core samples in 10 micrometer order (red) and fitted sign curve (pink) ## 機能性流体を用いた地下資源開発の効率化 これまでの資源開発では、資源流体の流路を造る・流路の透水性 の向上を目的に様々な開発が行われてきました。伊藤研では新た に、機能性流体を用いて、特殊な機能を有する機能性流体と地下の 流路システムの相互作用により、地下の流動挙動をコントロール する研究を最近開始しました。 ## Improving the Efficiency of Underground Resource Development Using Functional Fluids In resource development to date, various developments have been conducted to create resource fluid flow paths and to improve the permeability of flow channels. Recently, our lab. has started a new study to control subsurface flow behavior through the interaction between a functional fluid with a special function and the subsurface flow channel system. せん断増粘流体の流動特性。圧力源付近で顕著な増粘を示しており、 局所的な流路の流動特性制御の可能性を示している。 Flow characteristics of shear-thickened fluid. The fluid shows significant thickening near the pressure source, indicating the possibility of controlling the flow characteristics of a localized channel. せん断増粘流体による岩石破砕実験の結果。中央の 坑井から多方向にき裂が造成されている。 Results of rock fracturing experiments using shear thickening fluid. Cracks were created in multiple directions from the central wellbore. # エネルギー動態研究分野 #### **Energy Dynamics Laboratory** 森井 雄飛 Assistant Professor Youhi Morii エネルギー・環境問題やエネルギー科学への貢献を目指し、種々のエネルギーとその動態に関する基礎および応用研究を推進します。 熱物質再循環を基盤とした低エクセルギー損失燃焼をキーワードに、新コンセプト技術を視野に入れた、燃焼・反応性熱流体現象の基礎研 究を柱として進めていきます。基礎研究をベースに、産学官連携や国際共同研究バートナーとの学際的・分野横断融合を通じて問題解決 を図り、実験および数値計算の融合に加えて、直感力醸成の礎となる理論解析にも重点を置き、下記のテーマに取り組みます。 - マイクロ・マイルド・マイクログラビティ燃焼 - ・温度分布制御マイクロフローリアクタによる多段酸化反応 - ・代替燃料・バイオマス・合成燃料・アンモニア・バッテリー電解液・冷媒の燃焼 - ・自動車用ガソリンエンジンの超希薄燃焼・ノック抑制 - ·高温酸素燃焼 We pursue research and development on effective energy conversion and energy process in combustion and reactive thermal fluid systems with new technology concepts. By basing heat and/or mass regenerations for low-exergy-loss combustion as keywords, interdisciplinary researches are conducted with domestic and international collaboration partners in academic and industry. - · Micro-, Mild and Microgravity combustions - · Multi-stage oxidation by micro flow reactor with prescribed temperature profile - · Combustion with surrogate fuels, biomass, synthetic fuels, and ammonia, battery electrolytes, and refrigerants - · Super lean burn and knock suppression for automotive gasoline engines - · High-temperature oxy-fuel combustion ## マイクロリアクタによる着火・多段反応解析 定常な温度勾配を有する微小直径リアクタを用いることで、代 替燃料・バイオ燃料・アンモニア・バッテリー電解液・冷媒の多段酸 化反応の定在化に成功しました。これにより、オクタン価やセタン 価等の燃料の反応性の指標、燃料成分、圧力といった条件が多段酸 化反応に及ぼす影響を可視化することができます。高精度・厳密な 理論的背景の下で、実設計に貢献する反応デザインへの貢献を図っ ています。本手法は計測装置として実用化されました。 ## Study on Ignition and Multi-Stage Reactions by Micro Reaeactor Stationary multi-stage oxidations of alternative fuels, biofuels, ammonia, battery electrolytes, and refrigerants were realized by a micro flow reactor with a controlled temperature profile. Effects of reactivity indexes such as octane number and cetane number, composition of fuels and pressure on the multi-stage oxidation can be observed. A high fidelity reaction design is being developed with solid theoretical basis. This methodology was commercialized as a measurement instrument. 温度分布制御マイクロフローリアクタを用いたジメチルエーテルの反応性に及ぼすアンモニア添加効果の可視化と解析 Visualization and analysis for effects of ammonia addition on reactivity of dimethyl ether using micro flow reactor with controlled temperature profile 日本語 Er ## リチウムイオンバッテリー電解液の燃焼反応モデル構築(中村寿教授:反応性流動システム研究分野) リチウムイオンバッテリー(LiB)の出力密度とエネルギー密度 の向上および利用機会の拡大に伴い、LiBの発火防止が重要な技 術課題になっています。LiB電解液の主成分である炭酸エステル を対象に、反応性の評価と燃焼反応モデルの構築を進めています。 また、発火防止剤としての利用が考えられているフッ化物・リン化物も対象にしています。これらにより、LiB電解液の反応性予測のための基盤整備を進めています。 ### **Development of Combustion Reaction Model of Lithium-Ion Battery Electrolytes** (Professor Hisashi Nakamura: Reactive Flow Systems Laboratory) Since power density and energy density of lithium-ion batteries (LiB) are increasing and opportunities for their use are expanding, prevention of LiB fire is an important technical issue. For carbonate esters, main components of LiB electrolytes, we are conducting reactivity evaluation and development of combustion reaction model. In addi- tion to carbonate esters, fluoro and phosphorus compounds, which are considered as ignition inhibitors, are also covered. As a result, we are developing a platform for predicting the reactivity of LiB electrolytes. マイクロリアクタを用いた反応性評価と量子化学計算による反応経路探索 Reactivity evaluation using a micro reactor and reaction pathway analysis by quantum chemical calculations ### 自動車用ガソリンエンジンの超希薄燃焼・ノック抑制の実現 自動車用ガソリンエンジンにおいて50%以上の熱効率を達成するために、超希薄燃焼技術が注目されています。しかし、超希薄燃焼では着火が困難となるため、乱流下での着火から火炎伝播への遷移を観察する試験装置を開発し、遷移現象の物理化学過程を調
べています。また、実機開発において問題となるノックについて実験や数値解析を用いた研究を行っています。ノックの発生条件を調べ、ノック抑制手法の確立を目指しています。 ## Super Lean Burn and Knock Suppression for Automotive Gasoline Engines Hyper lean burn technology is attracting increasing attention to achieve more than 50% thermal efficiency in automotive gasoline engines. However, in hyper lean burn conditions, a transition from ignition to flame propagation is usually difficult. An apparatus for observing the transition from ignition to flame propagation has been developed, and physical and chemical process controlling the transition has been investigated. Also, experiments and numerical analysis of engine knock are conducted to establish the way to suppress the knock by examining the conditions under which the knock occurs. ハイパーリーンバーンエンジン実現のための 着火から火炎伝播遷移の研究 Study on ignition-to-flame propagation transition for realizing hyper lean-burn engines ノック発生時の温度場 Temperature field at the time of ## 「きぼう」実験棟と航空機による微小重力環境下における極低伸長対向流火炎 国際宇宙ステーション「きぼう」実験棟での燃焼実験テーマに選れました。酸素燃焼条件の対向流火炎を極低伸長まで低下させる ことでFlame ballの実現条件に近づけ、Flame ballと伝播火炎の限界を統一的に扱う理論構築・検証を目標としています。 #### Ultra low-Stretched Counterflow Flames under Microgravity Environment in "Kibo" Japanese Experimental Module and Airplane Our proposal on space combustion experiment was selected as a project at the "Kibo" Japanese Experimental Module in the International Space Station. The objective is to construct the unified combustion limit theory of propagating flame and flame ball under the oxygen combustion condition using ultra low-stretched counterflow flames. 微小重力環境下での対向流火炎と国際宇宙ステーション・微小重力実験用航空機 Counterflow flames under microgravity environment and International Space Station & aircraft for microgravity experiment # 混相流動エネルギー研究分野 Multiphase Flow Energy Laboratory 石本 淳 Professor Jun Ishimoto 大島 逸平 Assistant Professor Ippei Oshima 本研究分野では、超並列分散型コンピューティングと先端的光学計測の革新的融合研究に基づくマルチスケール先端混相流体解析手法 の開発・体系化を目指している。さらに、高密度水素に代表されるマルチスケール異分野融合エネルギーに直結した新しい混相流体シス テムとそれに伴うリスク科学の創成を目的とした基盤研究を推進している。 特に、サブミクロン・ナノオーダ極低温微細粒子の有する高機能性に着目し、ヘリウムを使用しない新型の一成分ラバルノズル方式によっ て生成される超音速極低温微細粒子噴霧の活用による環境調和型ナノクリーニング技術の創成、ならびに太陽電池・タッチパネル用ITO 膜(酸化インジウムスズ)のはく離技術に関し、異分野融合型の研究開発を行っている。また、メガソニック洗浄における粒子除去メカニ ズムの解明のため、メガソニック場中の複数気泡ダイナミクスの大規模数値解析を行っている。 さらには、自然災害リスク科学における混相流体力学的アプローチとして、漂流物・震災がれきが混入した津波ダメージや衝撃力、また、 メガフロートを用いた沖合津波の波高軽減効果を評価するFSIスーパーコンピューティング(模擬実験)技術を開発している。 Our laboratory focuses on developing innovative multiphase fluid dynamic methods based on the multiscale integration of massively parallel supercomputing and advanced measurements and research related to creating environmentally conscious energy systems. Furthermore, we promote basic research for the creation of risk management science and associated new multiphase flow system linked to sustainable energy represented by a high-density hydrogen storage technology. Notably, we are focusing on different field integration research and development, such as the creation of environmentally conscious type nano-cleaning technology using a reactive multiphase fluid that is a thoroughly chemical-free, pure water-free, dry type semiconductor wafer cleaning system using cryogenic micro-nano-solid high-speed spray flow, and also focusing on removal-reusing technology for solar cells and ITO membranes for conducting organic polymer (including indium oxide tin). We also performed a computational study of multiple bubbles' behavior in the megasonic field to clarify the particle removal mechanism by megasonic cleaning. Furthermore, aiming to contribute disaster risk science field, the fundamental mitigation effect of mega-floating structures on the water level and hydrodynamic force caused by the offshore tsunami has been computationally investigated using the SPH method considering the fluid-structure interaction (FSI). ## マルチスケール異分野融合型混相エネルギーシステムの創成 反応性水素の高エネルギー密度化に着目し、高密度・低容積水素 貯蔵・輸送システムならびにレジリエントな水素安全管理技術の 開発を目的とした、混相流体力学、破壊力学、材料力学、燃焼工学 を基盤とした異分野融合型研究を推進している。 #### **Development of Integrated Multiscale Multiphase Flow Energy System** Focusing on the reactive high energy density of hydrogen concentration, based on multi-phase fluid mechanics, fracture mechanics, material mechanics, and combustion engineering for the development of high density, low volume hydrogen storage, and transport system, we promote the resilient hydrogen safety management technology by interdisciplinary research. Crack propagation by particle Instantaneous isosurfaces of H, mass fraction and OH mass fraction 高圧水素タンク隔壁に発生したき裂伝ば挙動と着火を伴う反応性漏えい水素の拡散挙動 Coupled FSI computing of reactive hydrogen leakage phenomenon accompany with crack propagation of pressure vess 極低温ファイン固体粒子噴霧を用いたナノデバイスクリーニング Nano device cleaning using cryogenic fine solid particulate spray ## 自動車部品生産技術に対する混相流体-構造連成解析的アプローチ 自動車部品の生産技術に関する先端混相流体ー構造連成解析的 アプローチを実施し、インジェクタースプレー微粒化メカニズム、 3Dプリンタ内微粒子のレーザー溶融現象、エンジン用ピストンー コンロッド間のトライボロジー現象等に関するスーパーコンピュー テイング手法を開発している。 #### Multiphase Fluid-Structure Coupled Computing Approach to Automotive Component Production Technology We are developing advanced multiphase hydrodynamic approaches to automotive component production technology. The research includes the following items. - $\boldsymbol{\cdot}$ The injector spray atomization mechanisms. - · Laser melting process of fine particles in 3D printers. - Tribological phenomena between pistons and engine connecting rods スワールインジェクターの微粒化プロセスに 関するスーパーコンピューティング Supercomputing of swirl injector atomization process 3D printer 用金属粒子のレーザー溶融プロセスとプパッタ粒子発生メカニズム Laser melting process of metal particles for 3D printer and mechanism of spatter particle generation エンジン用 Piston-pin とコンロッド間弾性流体潤滑に関する流体ー構造体 連成解析 The pressure contour and elastic deformation behavior of pistonpin by FSI elastohydrodynamic lubrication computing ## ガスタービンの革新的燃料噴射技術の開発 微粒化過程の素過程と各過程の相互作用に着目し、数値解析、可 視化計測、光学計測や理論解析を協調して行うことで、気流による 液膜微粒化過程の解明と微粒化制御技術の確立を目指している。 ## **Development of Innovative Fuel Injection Technology for Gas Turbines** By focusing on the elementary processes of the atomization process and the interaction of each process, we aim to elucidate the liquid film atomization process by airflow and to establish atomization control technology by coordinating numerical analysis, visualization measurement, optical measurement and theoretical analysis. 平面液膜式燃料噴射弁による液膜微粒化過程 Atomization process of a liquid film by planar air-blast atomizer # マルチフィジックスデザイン研究分野 Multi-Physics Design Laboratory (兼)教授 大林 茂 Concurrent Professor Shigeru Obayashi (兼) 教授 岡部 朋永 Concurrent Professor Tomonaga Okabe 准教授 阿部 丰晃 Associate Professor Yoshiaki Abe 本研究分野では、現代工学の基幹分野である流体科学・材料科学・設計学・計算機科学の融合による新たな融合領域「マルチフィジック スデザイン」の創成を目的とし、航空工学への適用を端緒として、航空機設計開発に関連するマルチフィジックス諸問題を数値解析技術 により解決する、次世代航空工学の創出を目指します。 This laboratory aims at developing a new interdisciplinary research field named as "mutiphysics design" spanning across the fluid science, material science, design engineering, and computer science to tackle multiphysics problems on research and development for aircraft design. This research field is expected to glue existing engineering fields in a more seamless way and lead to a next-generation aeronautical engineering field. #### 異なる物理を繋ぐデータ駆動型の連成数値解析と最適設計 支配方程式の異なる物理現象が組み合わさった時、その数値解 析においても個々の分野で確立された解析手法を組み合わせる(連 成解析)必要があり、個々の手法に比べた計算効率の低下やアルゴ リズムの複雑化が問題となります。本研究では、応答曲面法と分離 解法等を併用した新たな連成解析手法の開発に取り組み、従来に ない高並列化効率と実装の容易さを両立することを目指し、複合 材航空機の空力構造最適設計を中心とした流体構造連成問題への 適用・実証を進めています。 ### Optimal Design Using Data-Driven Method for Solving Multiphysics Problems Numerical simulations of a multiphysics problem which involves multiple physics governed by different governing equations require to combine numerical methodologies developed in various research fields. This often leads to more complicated algorithms and thus degrades a computational efficiency. Our research group aims at developing a new multiphysics interaction method based on a response surface and partitioned approaches so that both computational efficiency and implementation are facilitated. The proposed method is applied to several fluid-structure interaction problems such as an optimal design of CFRP aircrafts, flutter analysis, and wake-induced-vibration analysis. 炭素繊維複合材を用いた航空機機体の最適設計 Optimal design of CFRP aircrafts データ駆動型並列解法を用いた流体構造連成解析 Flutter and wake-induced-vibration analysis by a data-driven fluid-structure interaction method ### マルチフィジックス解析による先進材料の活用 近年、3Dプリンターを用いた構造成形が注目されており、特に 炭素繊維複合材の3D造型の実現に向けて航空分野でも盛んに研 究がなされています。本研究では、一般化座標SPHによる繊維入 り樹脂の造型シミュレーションや、溶融金属の熱物性測定を目的 とした浮遊液滴法の流体構造連成解析を行い、航空機構造の製造 プロセスにおけるマルチフィジックス問題の解決に取り組んでい ます。 #### **Multiphysics Analysis of Advanced Materials for Aircraft** A 3D printer is one of the promising technologies to facilitate a manufacturing process of aircrafts particularly for the use of CFRP as primary aerostructures. Our research group performs a generalized SPH (Smoothed Particle Hydrodynamics) to simulate a FDM-type 3D printer with fibers, and also conduct a fluid-structure interaction analysis to understand the mechanism of a gas-jet levitation method used for a thermophysical property measurement of molten metal. 一般座標 SPH による繊維入り3D プリンターの解析 Numerical simulation of fiber-reinforced 3D printing technology using a generalized $\ensuremath{\mathsf{SPH}}$ 液滴浮遊法の流体構造連成解析 Fluid-structure interaction analysis of a gas-jet levitation method ## Modern Hardware と高並列計算機を用いた高精度非定常空力解析 航空機の離着陸時を含めた非巡航状態の空力解析には、高精度 非定常流体ソルバーが必須となります。本項目では、近年飛躍的に 進歩しつつあるアクセラレータを代表としたModern Hardware を用いた高次精度非構造流体解析手法の研究を進めています。特 に流束再構築法(FR法)に基づいて異なる計算アーキを横断的に 利用する高精度解析を中心とし、ジェットエンジン内部流れやモーフィングフラップなどの流体制御デバイスの研究を行っています。 ## High-Fidelity Aerodynamic Simulation Using Parallel Modern Hardwares High-fidelity turbulent simulation is essential for simulating non-cruise conditions of aircraft such as take-off and landing phases. This research proceeds the study of high-order unstructured scheme for compressible flows using modern hardwares such as GPU acceler- ator. In specific, our group is using the high-order flux-reconstruction (FR) scheme to perform high-fidelity simulations of compressible flows inside jet
engines and around fluid control devices. 高並列 GPU 計算機を用いたジェットエンジン内部流れの高次精度空力解析 High-fidelity aerodynamic simulation of turbine blade using modern hardwares ## 反応性流動システム研究分野 Reactive Flow Systems Laboratory 中村 寿 Professor Hisashi Nakamamura 燃焼によるエネルギー変換は、良好な負荷変動追従性と大きさ・重量あたりの出力が高いという特徴から、推進・発電・加熱を目的とする 様々なエネルギーシステムで利用されています。一方で、CO。の排出をなくすために、燃料を化石燃料由来から再生可能エネルギー由来 に変更するという大きな変革が必要です。当研究室では、マイクロフローリアクタやバーナを用いた実験や反応素過程の数値シミュレーショ ンにより、再生可能エネルギー時代の新燃料の化学反応や火炎の特性を理解し、モデル化して、ゼロエミッション燃焼器の設計開発に必 要な燃焼数値シミュレーションの基盤を構築しています。また、新燃料の燃焼が燃焼器壁や被加熱物の材料に及ぼす影響も調べています。 さらに、再生可能エネルギーを電気として蓄えるバッテリーや、高効率な冷暖房を実現するヒートポンプを対象に、これらの発火事故を抑 制するため、主要な可燃成分である電解液や冷媒及びこれらに添加可能な難燃剤の燃焼についても研究しています。 Energy conversion by combustion is used in various energy systems for propulsion, power generation, and heating due to its good load-following capability and high output per size and weight. On the other hand, significant challenges are required to change the fuel from fossils to renewable sources in order to eliminate CO2 emissions. In our laboratory, we are elucidating and modeling the chemical reactions and flame characteristics of new fuels in the renewable energy era through experiments using micro-flow reactors and burners and numerical simulations of the elementary processes, thereby establishing a platform for numerical combustion simulations necessary for the design and development of zero-emission combustors. We are also investigating the effects of combustion with new fuels on combustor walls and materials to be heated. We are also studying the combustion of electrolytes and refrigerants, which are key combustible components, and flame retardants that can be added to them, in order to mitigate fire accidents in batteries that store renewable energy as electricity and heat pumps that provide high-efficiency heating and cooling. ## アンモニア燃焼ー窒素と水だけが排出される究極の低環境負荷燃焼 アンモニアは、再生可能エネルギーから製造可能、優れた貯蔵・ 輸送性、エネルギー利用時にCO。無排出、という特徴から将来のエ ネルギーキャリアとして有望視されています。一方で、炭化水素よ り燃えにくく、アンモニア中の窒素原子由来のNOx生成があるた め、高効率・低NOx燃焼の実現には基礎的知見に基づいた新しい 燃焼器が必要です。この設計開発のために、アンモニアの火炎の 特性や反応素過程を調べ、モデル構築と検証を進めています。 #### Ammonia Combustion - The Ultimate Environmentally Friendly Combustion, Emitting Only Nitrogen and Water Ammonia is a promising energy carrier for the future because it can be produced from renewable energy sources, has excellent storage and transport characteristics, and emits no CO2 when used for energy. On the other hand, ammonia is less reactive than hydrocarbons and generates NOx formation from the nitrogen atom in ammonia. Therefore, a new combustor based on fundamental knowledge is needed to achieve high efficiency and low NOx combustion. For design and development, we are investigating the flame characteristics and elementary reaction processes of ammonia, and performing model development and validation. アンモニアの基礎燃焼実験(左下:対向流火炎、右:マイクロフローリアクタ)と量子化学計算(左上) Fundamental combustion experiments (lower left: counterflow flame, right: micro-flow reactor) and quantum chemical computations (upper left) for ammonia ## バッテリー電解液と電解液に可溶な難燃剤のサロゲート燃焼反応モデル構築 リチウムイオンバッテリー(LIB)の出力密度とエネルギー密度の向上および利用機会の拡大に伴い、LIBの発火抑制が重要な技術課題になっています。LIB電解液の主成分である炭酸エステルを対象に、反応性の評価と燃焼反応モデルの構築を進めています。 また、電解液に可溶な難燃剤としての利用が考えられているフッ化物・リン化物も対象にしています。これらにより、LIB電解液およびそれらに可溶な難燃剤の反応性予測のための基盤整備を進めています。 #### Development of Surrogate Combustion Reaction Model of Battery Electrolytes and Flame Retardants Soluble in Them Since power density and energy density of lithium-ion batteries (LIB) are increasing and opportunities for their use are expanding, mitigation of LIB fire is an important technical issue. For carbonate esters, main components of LIB electrolytes, we are conducting reactivity evaluation and development of combustion reaction model. In ad- dition to carbonate esters, fluoride and phosphorus compounds, which are considered as flame retardants soluble in LIB electrolytes, are also covered. As a result, we are developing a platform for predicting the reactivity of LIB electrolytes and flame retardants soluble in them. LIB 電解液サロゲート燃焼反応モデルの概略図と難燃剤の熱分解反応経路 Schematic of LIB electrolyte surrogate combustion reaction model and pyrolysis reaction pathway of a fire retardant ## 機械学習支援による簡易反応モデルの構築手法 詳細な燃焼反応モデルは数百から数千の化学種を含むため、これらの保存を全て解く燃焼数値シミュレーションは膨大な計算負荷を必要とします。燃焼器の設計開発や火災のシミュレーションを現実的な計算負荷で実施するために、燃焼特性の予測性能を維 持しつつ、燃焼反応モデルに含まれる化学種を減らした簡易反応 モデル構築法を研究しています。燃焼現象は極めて非線形性の強い現象であるため、従来手法では困難な超小型反応モデルを目指 して、特に機械学習の支援を取り入れた簡易化法を研究しています。 ## Machine Learning-Assisted Method for Generating Simplified Reaction Models Detailed reaction models include hundreds to thousands of chemical species. Combustion numerical simulations that solve the conservation of all of these species require a huge computational cost. In order to conduct the design and development of combustors and fire simulations with a realistic computational cost, we are developing a method for generating simplified reaction modes that include a smaller number of species while keeping prediction performance of combustion properties. Since combustion phenomena are highly nonlinear, we are particularly developing machine learning-assisted methods to achieve ultra-small reaction models, which are difficult to achieve using conventional methods. 遺伝的アルゴリズムを用いた簡易アンモニア反応モデル構築法 A method for generating a simplified ammonia reaction model using genetic algorithm ## 次世代電池ナノ流動制御研究分野 Novel Battery Nanoscale Flow Concurrent Laboratory (兼)教授 徳増 崇 Concurrent Professor Takashi Tokumasu 近年の地球温暖化問題、原発問題などから、クリーンなエネルギー源である太陽電池、リチウムイオン電池、燃料電池等の開発が世界的 に急がれています。これら電池の効率を向上させ、コストを低下させるには、電池内部で起こっている反応物質の流動を把握し、制御する ことが必要不可欠ですが、電池内部はナノスケールレベルの非常に微細な構造の集合体により構成されているため、通常の実験・計算技術 ではその流れの様相を正確に把握することができません。本研究分野では、このような電池内部の反応物質の「流動」、すなわち輸送現象 をスーパーコンピュータを用いた大規模量子/分子動力学法により解析し、その現象の特性を把握し、影響を及ぼす支配因子を特定する ことによって、高効率・低コストな次世代電池の理論設計を行うことを目指して研究を行っています。 Development of clean energy sources, such as solar cell, Lithium ion battery and fuel cell, is rapidly progressed all over the world because of recent problems of global-warming and nuclear power plant. It is indispensable to comprehend and control the flow of reactants or products in these batteries to improve the efficiency and decrease the cost. However, it is impossible to comprehend the flow dynamics of these substances accurately by conventional experiments or simulations because the flow field in these batteries consists of aggregations of very fine structure which is of the order of nanometer. Our laboratory analyzes the "flow", or transport phenomenon of reactants or products in the batteries by large scale quantum calculation or classical molecular dynamics method using a supercomputer. Moreover, we aim to make a theoretical design of a next-generation battery which is high efficiency and low cost by comprehending the characteristics and governing factors of the transport phenomenon from the simulation results. ## 固体高分子形燃料電池内部の物質輸送・構造特性の連成解析 固体高分子形燃料電池の性能向上のためには、反応物質である プロトンや酸素を速やかに触媒に輸送し、生成物である水を速や かに排出する必要があります。その特性を解析するには数値シミュ レーションが非常に有効な手法になりますが、燃料電池内部の構 造体の特性長はナノスケールのオーダーであり、通常の連続体理 論では解析を行うことができません。本研究では、分子論的な手法 を用いてこの燃料電池の材料の構造特性と流動特性の相関を解析 し、次世代の燃料電池開発に応用しています。 ### Coupled Analyses of Mass Transport - Structure Characteristics of Polymer Electrolyte Fuel Cell To improve the efficiency of polymer electrolyte fuel cell (PEFC), protons and oxygen molecules as reactant materials can reach faster to catalyst surface and water molecules as product material can exhaust faster. Numerical simulations are effective methods to analyze the characteristics. However, the characteristic length of the flow fields in PEFC is the order of nanometer and therefore conventional computational flow dynamics cannot be applied to the analysis of the flow phenomena. In this study, the relation between structure characteristics and flow characteristics in PEFC are analyzed by molecular simulations and the results are applied to the development of next generation fuel cells. 固体高分子形燃料電池内部の物質輸送特性・構造特性シミュレーション Simulations of mass transport and structure characteristics in polymer electrolyte fuel cell ### 全固体Liイオン電池内部のLiイオン輸送現象の分子論的解析 現在のLiイオン電池の電解液を固体電解質に置き換えた全固体 Liイオン電池は、次世代の二次電池として期待されています。この 全固体電池を構成する固体電解質やLiイオンを蓄える活物質内部、 またその界面におけるLi伝導特性は全固体電池の性能を決定する 非常に重要な指標です。本研究では、イオン伝導性の高い材料の ナノスケール構造の特徴を捉えることを目的として、固体電解質 内部や活物質内部、固体界面でのLiイオンの輸送現象を量子化学 計算や分子動力学シミュレーションにより解析しています。 ### Molecular Study of Transport Phenomena of Li Ion in All Solid State Li Ion Battery All solid state Li ion batteries, in which liquid electrolyte of current Li ion batteries is replaced by solid electrolytes, are expected as next-generation secondary batteries. The Li conduction characteristics in the solid electrolytes, in the active material where Li ions are stored, and at the interface between them, are very important factors that determine the performance of the all solid state battery. In this research, we aim to capture the characteristics of nanoscale structures inside the materials of high ionic conductivity, and to investigate the transport phenomenon of Li ions in the solid electrolytes, in the active materials, and at solid interfaces by quantum chemical calculation and molecular dynamics simulations. 固体界面での Li イオン輸送現象シミュレーション ((a) 固体電解質、(b) 正極活物質、(c) コート材料の単位格子) Simulation for transport phenomenon of Li ions at solid interfaces (Unitcell of (a) solid electrolyte, (b) active material of cathode, and (c) coating material) ## 固体酸化物型燃料電池用セラミック複合材内部の酸素イオン輸送現象の分子論的解析 固体酸化物型燃料電池は高温 (800 $\mathbb{C} \sim 1000 \mathbb{C}$) で作動し、非常に高効率な燃料電池です。この燃料電池では、酸素イオンがセラミック内部を移動して発電します。このセラミックに用いられる代表的な部材として、Strontium-doped Samarium Cobaltite (SSC) (Sm_{1-x}Sr_xCoO₃) と Samarium-doped Ceria (SDC) $(Sm_xCe_{1-x}O_2)$ の複合材があります。本研究ではこの複合材内部の酸素イオンの輸送現象を分子論的に解析し、酸素イオンの輸送抵抗、主にSSCとSDCの界面抵抗が生じる原因に付いて解明を行っています。 #### Molecular Study of Transport Phenomena of Oxygen Ion in Ceramic Composite Material for Solid Oxide Fuel Cell Solid Oxide Fuel Cell is a high performance fuel cell operated at higher temperature (800°C \sim 1000°C). This fuel cell generates electricity by transferring oxygen ion from
cathode to anode through a ceramic material. As the ceramic material, composite material of Strontium-doped Samarium Cobaltite (SSC) (Sm_{1-x}Sr_xCoO₃) and Samarium-doped Ceria (SDC) (Sm_xCe_{1-x}O₂) is a representative material. In this study transport phenomena of oxygen ion in the ceramic composite material is analyzed by molecular simulations. Especially, we analyze the transport resistance of oxygen ion through the grain boundary between SSC and SDC. SSC (上)とSDC (下)の単位格子 Unit cell of SSC (upper) and SDC (lower) SSC/SDC 複合材内部の酸素イオン輸送特性の分子シミュレーション Molecular simulation of transport phenomena of oxygen ion in SSC/SDC composite material # 流動・材料システム評価研究分野 Mechanical Systems Evaluation Laboratory 内一 哲哉 Professo Tetsuya Uchimoto 次世代輸送システム、エネルギープラントにおいては、流動が誘起する構造材料の劣化・損傷に対して合理的に管理を行うことが重要です。 本研究分野では、これらのシステムの高信頼化に資するセンシングおよびモニタリングに関する研究を行っています。電磁非破壊評価法 による材料の劣化・損傷の評価法や高温環境センサの開発を行い、これらをオンラインモニタリングに適用することを目指しています。また、 多様なセンサの融合による高信頼化センシングと逆問題的アプローチに関する研究を行っています。これらの研究をより効果的に行うた めに、材料科学分野やデータサイエンス分野の研究者と連携して研究を行っています。 In lifecycle management of next-generation transportation systems and energy plants, evaluation of degradation and damage of structural materials induced by flow is one of key issues. Our laboratory is conducting research on sensing and monitoring that increase reliability and safety of these systems. Our activities include evaluation of degradation and damage in various materials by electromagnetic nondestructive testing, development of high temperature sensors, reliable sensing by sensor fusion, inverse approach, and so on. We aim at applying these sensors and testing methods to online monitoring. #### 電磁非破壊評価を用いたロケットエンジン燃焼室の劣化・損傷評価 ロケットエンジンの高信頼化のために、燃焼室の非破壊試験が 重要な技術となります。本研究分野では、渦電流探傷法による口 ケットエンジン燃焼室内筒の亀裂検出に関する研究を行っていま #### Evaluation of Degradation and Damage in Rocket Engine Combustion Chamber by **Electromagnetic Nondestructive Testing** The residual life estimation based on damage evaluation is very important to ensure the safety of the repeated engine operation and the reusable systems. We apply eddy current testing (ECT) to detection and evaluation of cracks in a rocket engine combustion chamber, and novel probes and signal processing method are being developed. LE-9エンジン © JAXA 燃焼器モックアップ 試験体を用いた 実験 Demonstration of crack detection in combustion chamber mockup specimens 日本語 English ## 炭素繊維強化プラスチック (Carbon Fiber Reinforced Plastics: CFRP) の非破壊評価 先進複合材料として航空機などでも使用されている CFRP の安全性と信頼性を保証するための診断技術の開発を行っています。 CFRP に生じる欠陥のうち、炭素繊維に生じる欠陥は電磁非破壊 評価法により検出することが可能です。特に、繊維ミスアライメントや繊維破断を渦電流試験によって評価するためのプローブと信号処理法の検討を行っています。 ### **Nondestructive Evaluation of Degradation of Carbon Fiber Reinforced Plastic** CFRP is used in aircraft and other applications as an advanced composite material. We are developing diagnostic technologies to guarantee reliability and safety of CFRP. Among the defects that occur in CFRP, carbon fiber defects can be detected by electromag- netic nondestructive evaluation methods. In particular, we are investigating probe and signal processing method to evaluate misalignment of fiber orientation and fiber breaking by eddy current testing. CFRP に対する ECT 試験 ECT for CFRP CFRP におけるミスアライメント層の抽出 Extraction of misalignment layer in CFRP ### 電磁非破壊評価を用いた構造材の劣化診断 クリープ劣化、塑性ひずみ、残留応力などの材料劣化を非破壊的 に評価できれば、き裂などの損傷が顕在化する前に合理的に構造 物を管理することができます。劣化に伴う磁気特性の変化に着目 して、電磁非破壊評価法により劣化診断を行う手法の開発を行っ ております。特に、磁気的試験法の1つである渦電流磁気指紋法を 適用するとともに、劣化と磁気特性との関係について、メカニズム 解明を含めた検討を行っています。 # Nondestructive Evaluation of Degradation of Structural Materials Using Electromagnetic Testing Nondestructive evaluation of materials degradation such as creep, fatigue, plastic strain and residual stress can be one of effective tools for lifecycle managements of structural components. Our laboratory has been developing electromagnetic testing methods to evaluate material degradation. In particular, we have been developed. oping the eddy current magnetic signature (ECMS) method, which is one of the electromagnetic testing methods, and investigating the relationship between deterioration of materials and material magnetic properties, and its mechanism. in-situ ECMS 試験 in-situ ECMS experiment 弾性ひずみと渦電流磁気指紋信号の変化 ECMS signal changes according to the amount of elastic strains ## 統合流動科学国際研究教育センター Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) 統合流動科学国際研究教育センターは、統合流動科学を学術基盤として、革新的半導体デバイスや燃料アンモニアをはじめとする多様な応用分野への展開のための研究を行います。国際連携活動の促進を支援してきた国際研究教育センターと日仏の交流や共同研究で大きな成果を挙げたリヨンセンターによる活動を統合・強化することにより、フランス、台湾、サウジアラビア、アメリカ、シンガポールにおける海外拠点とともに共同研究教育を推進し、社会インパクトを創出するアライアンス型の国際拠点となることを目指します。世界の様々な分野の若手研究者が集うこの国際拠点から、多様な学問分野や文化に通じ、高い専門性を持つ人材を輩出します。 The Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) conducts research activities to be applied for various developments such as innovative semiconductor devices and fuel ammonia, based on integrated flow science. For the purpose, we promote collaborative research and education, utilizing the network with overseas bases at France, Taiwan, Saudi Arabia, United States and Singapore to be international alliance hub that create societal impacts. Furthermore, IFS-GCORE fosters young researchers from all over the world who combine high expertise and strong international/interdisciplinary network for co-creation. 世界の流動研究者コミュニティと共創する、フローダイナミクスアライアンスを形成・展開統合流動科学国際研究教育センターは、「流体+材料連携研究」の世界共創ハブへ Formation and development of the flow dynamics alliance for co-creation with the global flow science research community. The Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) will become an international hub for co-creation of "fluid + material collaborative research". アンモニア劣化メカニズム研究 Research on Ammonia Degradation Mechanism アンモニア用耐環境コーティング技術 Environmental Resistant Coating Technology for Ammonia アンモニア貯蔵用高分子材料の設計 Design of Polymeric Materials for Ammonia Storage 高温材料研究 High Temperature Material Research 合金設計 Alloy Design > 統合流動科学国際 研究教育センター Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) ICFD 流体研主催国際会議 International Conference hosted by IFS 台湾国立陽明交通大学 National Yang Ming Chao Tung University 革新的半導体デバイス Innovative Semiconductor Device 3/2nm 世代3次元構造 3/2nm Generation 3D Structures 量子ドット太陽電池 Quantum Dot Solar Cells グリーンアンモニア Green Ammonia アンモニア燃焼 Ammonia Combustion グリーン水素 Green Hydrogen 立科学技 アブドラ王立科学技術大学 King Abdullah University of Science and Technology 異分野の若手研究者が集い、自己の高い専門性 (例:流体) と境界分野 (例:材料) の同世代研究者 との国際ネットワークとを兼備する人材へと成長する Young researchers from different research fields will come together, and they will develop into researchers who have both high expertise (e.g. fluid science) and an international network of peers in bordering fields (e.g. materials science). 統合流動科学国際研究教育センターの概要 Outline of Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) 燃料アンモニア研究で世界を先導する東北大学がリーダーシップを発揮し、サプライチェーン全体にわたる 課題に対する研究成果を創出 Tohoku University, a world leader in fuel ammonia research, will take the initiative in developing research results to address challenges throughout the ammonia supply chain # リヨンセンター(LyC)―材料·流体科学融合拠点― Lyon Center — Integration Research Center for Materials and Fluid Sciences— 2018年4月に東北大学流体科学研究所は、リヨンセンターをリヨン大学のINSA-Lyon(国立応用科学院リヨン校)、Ecole Centrale de Lyon(エコール・セントラル リヨン校、ECL)とリヨン第一大学(Université Claude-Bernard Lyon 1)内に創設いたしました。本センターでは、本研究所および国内の流体科学分野の研究者とリヨン大学を中心とした材料科学分野の研究者が共同研究を行うとともに、この共同研究活動を通して若手研究者と学生を育成します。 流体科学研究所は流体科学を基盤に異分野の学術領域が融合する新しい課題解決型学問領域を開拓し、エネルギー、次世代輸送システム、医工学の応用分野で社会的な課題に挑戦してきました。さらなる進化と発展のために、欧州有数の材料科学研究拠点であり、有数の産学連携拠点であるリヨン大学(Université de Lyon)に拠点を設置し、海外研究ユニットの運営、双方の強みを活かした共同研究、世界をリードする人材育成に取り組んでいます。 The Lyon Center was established in Université de Lyon in April 2018 by Tohoku University's Institute of Fluid Science. At this center, fluid science researchers from the IFS and other Japanese institutions will conduct collaborative research projects with materials science researchers mainly from Université de Lyon. Through these collaborative research activities, we will also educate young researchers and students. The IFS is pioneering a new type of problem-solving academic program, a combination of different academic fields with fluid science as its base, and is addressing social problems related to energy, next-generation transport systems and medical engineering. To encourage further progress and developments we established its base at Université de Lyon, a center for Europe's materials science research and academia-industry cooperation. From here we will operate an international research unit, do collaborative research utilizing the strengths of each party, and promote world-leading human resources development. # 未来流体情報創造センター(AFI) 日本語 English 未来流体情報創造センターは、流体科学分野におけるスーパーコンピューティング、計算機シミュレーションと実験の計測融合研究、 流体情報の高度可視化等のための次世代融合研究システムを運用するとともに、国際会議の開催やデータベースによる研究成果の発信を 行っています。学術的、社会的に高い研究目標を達成するために、次世代融合研究システムの利用はプロジェクト研究を主体とし、採択審 査や評価を行っています。これらを通じて、流体科学研究所の使命、すなわち流体科学の基礎研究とそれを基盤とした先端学術領域との 融合ならびに重点科学技術分野への応用による世界最高水準の研究の推進に貢献しています。 At the Advanced Fluid Information Research Center (AFI Research Center), the Integrated Supercomputation System is employed in diverse applications such as supercomputing in fluid science, measurement-integrated research for the simulation and experiment, and advanced visualization for fluid information. In addition, international symposiums are conducted by AFI Research Center and the center's database is used to spread the research results. From the academic and social viewpoints, the Integrated Supercomputation System plays a pivotal role in research projects, which are screened and evaluated, for achieving high research goals. The Institute of Fluid Science's mission is to make contributions, such as integrating the fundamental study of fluid science with advanced academic fields and focusing on the applications of fluid science in the field of science and technology, toward the promotion of AFI Research Center as a world-class research center. ## ■ 次世代融合研究システム/Integrated
Supercomputation System 2024年8月に稼働を開始した現在の「次世代融合研究システム (AFI-NITY II)」は、スーパーコンピューティングを行う計算サーバ 群、計算結果の画像解析のための3次元可視化サーバ、実験装置を接続して計算シミュレーションと実験解析をリンクする計測融合研究のための次世代融合インタフェースサーバを中核として、PB クラスの容量をもつストレージシステム(磁気ディスク装置)を有し、3次元可視化出力装置を備えたリアライゼーションワークスペース(RWS)や周辺機器を備えています。 計算サーバ群は、HPEによる分散メモリ型並列計算システムと 共有メモリ型並列計算システムを主力として構成されており、システム総理論演算性能合計4.4PFLOPS・最大共有メモリ6TB・主記憶容量合計223TBの計算機能を提供します。 サーバ群と利用者をつなぐネットワークは40Gbit Ethernetをバックボーンとして整備され、研究所内において高速なデータ交換や画像処理を含むクライアント作業を可能にしています。 The "Integrated Supercomputation System," which currently consists of the distributed memory type parallel computing system, the shared memory parallel computing system, fluid-data analysis server, and the Measurement Integration Interface Server to link the supercomputer and experimental measurement system, started operation in November 2005 and was updated in May 2011, May 2014, August 2018, and August 2024. The data storage system (magnetic disk), which has petabyte class capacity, is connected to the servers using a storage area network (SAN). The Realization Workspace and peripherals with stereo visualization devices are also involved in the system. For the supercomputing servers, 447 nodes of HPE CRAY XD2000 are used as the distributed memory type parallel computing system, while the shared memory parallel computing system consists of HPE SuperdomeFLEX 280, providing a total peak performance of 4.4 PFLOPS together with fluid-data analysis server, maximum shared memory of 6 TB, and total storage capacity of 223 TB. The network which connects the servers and users has a 40 Gbit Ethernet as the backbone, and facilitates clients' work, including high-speed data transfer and image processing at each laboratory in the Institute of Fluid Science (IFS). # 次世代流動実験研究センター(AFX) Advanced Flow Experimental Research Center (兼)教授 永井 大樹 Concurrent Professor Hiroki Nagai 特任准教授 大谷 清伸 Specially Appointed Assosiate Professor Kiyonobu Ohtani シニアフェロー 小西 康郁 Senior Fellow Yasufumi Konishi 東北大学流体科学研究所には世界トップクラスの大型実験設備が設置されており、これらの施設で得られた実験データは、流体科学の 境界を押し広げ、さまざまな産業分野に応用されてまいりました。次世代流動実験研究センターは、これらの施設の中から低乱風洞実験 施設と衝撃波関連施設を利用した実験技術に関する研究開発及び運用管理を行い、これらの施設の学術利用及び産業利用に供する目的と して、2013(平成25)年4月に設置されました。 そよ風(5m/s)から大気圏突入速度(6km/s)まで、次世代流動実験研究センターは、世界にたぐいない性能と計測技術で、流体科学の 発展と日本企業の産業競争力強化に貢献します。 The Tohoku University Institute of Fluid Science has unique and world-class facilities. The experimental results obtained from such facilities have extended the frontier of fluid dynamics and have also applied industrial applications. The Advanced Flow Experimental Research center has been established in April, 2013 for research and development and operating management of the two large facilities, the low-turbulence wind tunnel and shock wave facilities. The Advance Flow Experimental Research center will contribute all velocity ranges from breeze (5m/s) to an atmospheric entry (6km/s) to the development of fluid science and strengthening the International Competitiveness of the company, with unique performance and advanced measurement technology of those facilities. ## ■ 低乱風洞実験施設/Low Turbulence Wind Tunnel Facility 低乱風洞実験施設は、低乱熱伝達風洞、小型低乱風洞、低騒音風 洞からなる実験施設です。主となる低乱熱伝達風洞は、流体関係 の基礎および応用研究を目的として、1975(昭和50)年3月に設置 された単路回流式の低速風洞です。本風洞は低乱れ、低騒音、優れ た気流の一様性を示すように設計されており、密閉型測定部の断 面は対辺1mの正八角形をしており、最大風速70m/s、開放型測 定部の断面は対辺0.8mの正八角形で、最大80m/sの一様性の高 い流れを作ることが可能です。特に、密閉型測定部では気流の乱 れ強さは0.02%以下と極めて低く、世界的にも優れた風洞設備で す。これらの性能を生かして、層流から乱流への遷移といった乱れ が低い風洞で無ければ観測しづらい流れ場の基礎研究や企業の製 品開発および技術力向上に貢献しています。 The Low Turbulence Wind Tunnel facility consists of three wind tunnels named the low-turbulence wind tunnel, small low-turbulence wind tunnel, and low noise wind tunnel. The main wind tunnel, low-turbulence wind tunnel is a closed return type wind tunnel that was constructed to contribute to fundamental fluid physics and applied physics in 1975. It is designed to satisfy the low turbulence intensity, low noise, and high velocity uniformity. The closed test section is an octagonal cross section, which width of the opposite side is 1m and a maximum free stream velocity is 70m/s. On the other hand, the open test section is an octagonal cross section, which width of the opposite side is 0.8m and maximum free stream velocity is 80m/ s. The turbulent intensity of both test sections is low enough to investigate the fundamental research, especially the turbulent intensity of the closed test section, lower than 0.02% of the free stream velocity, is extremely low in the world. It has been contributed to the fundamental research such as the turbulent transition of the boundary layer and/or to the product development for the industry. 低乱熱伝達風洞の開放型測定部 Open test section of the low turbulence wind tunnel #### ■ 衝擊波関連施設/Shock Wave Research Facilities 衝撃波関連施設は、弾道飛行装置と大型衝撃波管からなる実験施設です。弾道飛行装置とは、高速で飛翔体を射出する装置です。東北大学流体科学研究所に2002(平成14)年に設置した本装置は、飛翔体射出速度が100m/sの亜音速から最高6km/sの極超音速領域までの広い速度範囲であり、世界最高性能の装置です。本装置は、射出部、加速部、試験部から構成され、全長約19mの大型の装置で、飛翔体射出速度に応じて、3種類の射出形態(軽ガス銃、火薬銃、二段軽ガス銃)によって広範囲の射出速度域を実現していま す。大型の試験部(内径1.66m、長さ12m)には3箇所の可視化窓 を有しており、高速飛翔体自由飛行挙動、固体への高速衝突挙動を はじめとする実験時の高速度撮影が可能です。 本装置を用いて、気体中の高速自由飛行実験、水中突入実験、固体への高速衝突実験が可能であり、航空宇宙、材料開発、地球物理分野をはじめとする様々な理学・工学分野における基礎および応用実験が行えます。 The Shock Wave Research facility consists of a ballistic range and a large shock tube. The ballistic range is the apparatus which can launch the projectile at a wide speed range from subsonic speed, 100m/s, to hypersonic speed, 6km/s, established in 2002. It is a huge apparatus which consists of a launch section, an accelerating tube and a test chamber. Its total length is about 19 m. Three types of operating mode, single-stage light gas gun, single-stage powder gun, two-stage light gas gun, allowed such a wide range of the flying speed. The high-speed optical visualization such as free flight of the projectile or high velocity impact of the projectile to a solid material is allowed by three pairs of large windows built on the test chamber. A high-speed free flight experiment in stationary gas, a high-speed water entry experiment, a high velocity impact experiment to a solid material are possible and, using this device, can perform aerospace, materials development, the basics in various science, engineering fields including the field of earth physics and an application experiment. バリステックレンジ全景 Panoramic view of the ballistic range ## ■ 磁力支持天秤装置/1-m Magnetic Suspension and Balance System 低乱熱伝達風洞に第3の測定部として1-m磁力支持天秤装置 (MSBS)が整備されました。この装置は模型を磁気の力で気流中に支持すると共に、模型が気流から受ける力も計測できる装置です。 MSBS を用いると、通常の風洞試験では避けられない模型を支えているストラットやスティングの影響が無く、測定されるデータは模型に加わっている流体力そのものであり、試験結果の評価が 格段に容易になるという利点が有ります。また、外部から磁場により模型の姿勢を制御することから、模型に様々な運動をさせることも可能でありこれまで複雑で難しかった運動する模型周りの流れ場を再現することも可能です。本装置は、対辺距離が1mの正八角形の測定部を持つ世界最大の大きさを誇る磁力支持天秤装置であり、一般利用に供されている世界で唯一の装置です。 A unique model support system, 1-m Magnetic Suspension and Balance System (1-m MSBS), has been equipped at the Low Turbulence Wind Tunnel. The 1-m MSBS can support a wind tunnel model in flow magnetically and simultaneously measure the aerodynamic force acting on the model. The 1-m MSBS is the largest system in the world. You can conduct wind tunnel test without the support interference and drive a model in motion as you wish. 6軸制御による浮揚する AGARD-B 模型 AGARD-B model suspended by 6-axis control of MSBS ## 航空機計算科学センター(ACS) Aircraft Computational Science Center 航空機計算科学センターでは、航空機産業の国際競争力を維持・拡大していくために、産学連携研究を通じて、複合材時代の理想機体開 発を実現するためのCAE技術、空力と構造および強度解析をシームレスに連成し設計初期段階から高い次元での多目的最適設計が可能 となるCAE技術の開発を目指します。 To maintain and expand the international competitiveness of the aerospace industry, the center aims to develop CAE technology to realize the ideal aircraft structure in the age of composite materials, and CAE technology that seamlessly integrates aerodynamics, structure, and strength analysis to enable multi-objective optimal design at a high level from the initial design stage through industry-academia collaborative research. # IHI×東北大学アンモニアバリューチェーン共創研究所 IHI×Tohoku University Co-creation Research Center of Ammonia Value Chain for Carbon Neutrality IHI×東北大学アンモニアバリューチェーン共創研究所は、燃焼しても二酸化炭素(CO₂)を排出しないクリーンなエネルギー源である アンモニア(NH₃)を利用したカーボンニュートラル社会実現に向け、製造から輸送・貯蔵、利用までのバリューチェーン構築に向けた課題 探索と技術を通じた解決手段の創出を推進します。 The IHI × Tohoku University Co-creation Research Center of Ammonia Value Chain for Carbon Neutrality will explore issues and create solutions through technology to establish a value chain from production to transportation, storage, and utilization of ammonia (NH₃), a clean energy source that does not emit carbon dioxide (CO₂) even when burned, toward the realization of a carbon-neutral society. 2050年カーボンニュートラルに向けて、再生可能エネルギー資 源の少ない日本においては、燃焼してもCO。を排出しないアンモ ニア燃料利用に期待が集まっています。その社会実装を加速する ため、燃料利用技術開発に加え、製造・輸送・貯蔵なども含めたアン モニアバリューチェーン全体の課題探索と解決に取り組みます。 株式会社IHIが脱炭素化事業として注力するアンモニアバリュー チェーン構築において、東北大学との共同研究、共同試験により産 学の英知を結集し、アンモニアガスタービンの燃焼技術開発、耐ア ンモニア材料技術開発、さらにはバリューチェーン全体の新規技 術開拓を目的とします。 アンモニアバリューチェーンは、利用技術とサプライチェーン 全体を包含します。大規模発電に加え、工業生産、海運、港湾、マテ リアル産業などの多様な分野における脱炭素化と関連製品開発、 国際アンモニアサプライチェーンの構築を加速させることが期待 されています。 For carbon neutral by 2050 in Japan, where renewable energy resources are limited, there are significant expectations for the use of fuel ammonia, which does not emit CO2 when it is burned. To accelerate the implementation of fuel ammonia in society, we will search for and solve problems in the entire ammonia value chain, including producing, transportation, and storage, in addition to the development of utilization technology as a fuel. In the construction of the ammonia value chain, which IHI Corporation is focusing on as a decarbonization project, we will bring together the wisdom of industry and academia through collaboration research and joint testing with Tohoku University for the development of combustion technology for ammonia gas turbines, ammonia-resistant materials, and pioneering new technology for the entire value chain. The ammonia value chain encompasses the entire utilization technology and supply chain. In addition to large-scale power generation, it is expected to accelerate decarbonization in diverse sectors such as industrial
production, shipping, ports, and materials, as well as development of international ammonia supply chains. ## 技術室 #### Technical Services Division 流体科学研究所技術室は、流体科学研究所の研究推進に必要な機器等の開発および製作、データ処理やネットワークシステム保守管理 等の技術支援を行っています。 Technical Services Division provides technical support such as development and manufacturing of equipment necessary for research promotion of IFS, and data processing and network system maintenance. #### 企画情報班 Planning Information Section #### ◆企画運営係 Planning and Management Group 研究計画に対する技術支援や技術開発のプロジェクト研究等の企画・調整を行っています。 Planning and coordinating technical support for research plans and project research for technological development. #### ◆コンピュータネットワーク係 Computer Network Group ネットワークシステムの管理運用やコンピュータ関連技術の支援を行っています。 Supports network system management and computer-related technology. #### 計測技術班 Measurement Technique Section #### ◆流体·制御計測係 Fluid/Control Measurement Group 流動現象の制御計測技術の開発および計測機器の保守管理や計 測技術の開発・性能評価を行っています。 Development of control and measurement technology for flow phenomena, maintenance management of measuring equipment, development of measurement technology, and performance evaluation. #### ◆熱・エネルギー計測係 Heat/Energy Measurement Group 熱・エネルギー現象の測定法の開発および計測機器の保守管理 や性能評価を行っています。 Develop methods for measuring thermal and energy phenomena, maintenance and management of measuring equipment, and evaluate performance. #### 機器開発班 Instrument Development Section #### ◆機械加工技術係 Machining Engineer Group 実験装置の開発設計や実験用機器の加工・試作を行っています。 Development and design of experimental equipment and processing/prototyping of experimental equipment. #### ◆精密加工技術係 Precision Processing Engineer Group 実験用精密機器の加工・調整や供試体の開発設計・試作を行っています。 Machining and adjusting experimental precision equipment and developing, designing and prototyping specimens. ### **研究技術班** Research Technique Section #### ◆実験技術支援係 Laboratory Technology Support Group 実験装置の調整・運転およびデータ処理や実験技術の開発・評価 および精度向上の技術開発を行っています。 Adjusting and operating experimental equipment, processing data, developing and evaluating experimental technology, and developing technology to improve accuracy. #### ◆解析技術支援係 Analysis Technical Support Group 実験および解析データの可視化処理·動画作成の支援や解析技術の開発·評価および精度向上の技術開発を行っています。 Supports visualization processing of experimental and analysis data, video creation, development and evaluation of analysis technology, and technical development of accuracy improvement. ### 共同利用班 Joint Use Section #### ◆共同利用係 Joint Use Group 外部利用の実験技術支援や実験装置の運転・保守管理を行っています。 Provide experimental technical support for external use, as well as operation and maintenance management of experimental equipment. ## VISION2030と研究クラスター #### VISION2030 and Research Clusters 流体科学研究所は、2015年に策定したVISION2030のもと、これまで蓄積してきた研究や技術、国際研究ネットワークを礎として、様々 な社会課題の解決に向けて世界の研究者が集う流体科学分野の世界拠点形成を目指し活動してきました。 2021年9月、近年の社会情勢の急激な変化を踏まえ、研究所が目指す方向を今一度見つめ直し、VISION2030を改定しました。新たな ビジョンにおいて、社会・産業界への貢献を組織的に行うために、研究所独自の分野横断型研究グループ「環境・エネルギー」、「ナノ・マイ クロ」、「健康・福祉・医療(ライフサイエンス)」、「宇宙航空」の4研究クラスターおよび緊急性の高い社会課題に取り組むための研究チーム「社 会課題解決タスクフォース」を組織しています。 今後、これらクラスター等の活動を通して、快適で豊かな社会構築に貢献する新しい学術基盤「統合流動科学」を創成、展開してまいります。 The Institute of Fluid Science (IFS) has followed the VISION2030 it adopted in 2015, building on the research, technology, and international research network it has built up so far, as it works to form a global center for the field of fluid science. This center will bring together the world's researchers to push towards solutions for various social issues. In September 2021, the Institute reviewed its forward direction in light of the tumultuous changes in social conditions in recent years, and amended its VISION2030. Under this new vision, it has reorganized into four research clusters, which are unique interdisciplinary research groups in the fields of "environment and energy", "nano-micro", "health, welfare, and medical cares (life science)", and "aerospace", and the Social Issue Solutions Task Force, a research team to tackle pressing social issues. This structure will allow the Institute to make organized contributions to society and industry. From now on, the work of these clusters will form and advance a new academic foundation of integrated flow science, to contribute to the building of a comfortable and affluent society. #### Action 01 学術基盤の強化と #### 異分野融合 流体科学研究の学術基盤や、 熱流体計測・解析技術を継承・ 発展させるとともに、異分野融 合による新分野の共創や学理 構築を推准。 #### Action 03 #### 産業界を交えた 国際ネットワーク 産業界を交えた国際ネットワー クを構築し、国内外に向けて積 極的に研究成果を発信すること により、国際共同研究拠点化を 強力に推進。 #### Action 02 #### 分野横断型 研究グループ 「環境・エネルギー」「ナノ・マイ クロ」「健康・福祉・医療」「宇宙 航空」の4クラスター、および 「社会課題解決タスクフォース」 の1チームを組織。 #### Action 04 #### 高度専門人財 育成 国内外の研究者・学生にとって 魅力的な研究教育体制や研究 環境を整え、国内外の研究機 関・産業界で活躍できる高度 専門人財を育成。 ## ■ 環境・エネルギークラスター/ Environment and energy cluster #### 脱炭素社会を実現し、新たなエネルギー体系を創造する統合流動科学の開拓を目指します COP26「グラスゴー気候合意」によって全世界が地球温暖化対策に具体的数値目標をもって取り組むことが再確認され、温室効果ガス排出抑制や新たなエネルギー源の創出が緊急の課題となっています。産業活動や生活の質を維持・向上させながらこれらの喫緊課題を解決していくためには、新たな低環境負荷エネルギー源の確保、自給可能な再生可能エネルギー導入促進、省エネルギー技 術の更なる開発など、グリーン成長戦略を意識し入口から出口までの各々の知の創出を紡いだ取組が不可欠となっています。環境・エネルギークラスターでは、人類の活動や持続的発展に必要不可欠な「エネルギー」の変換や創成について再考し、基盤技術から応用技術まで、広範な時空間における環境・エネルギー問題の解決に向けた幅広い研究開発を推進します。 # We aim to develop integrated flow science to realize a decarbonized society and create a new energy system The COP26 "Glasgow Climate Pact" reaffirmed the need for the entire world to tackle global warming issues with specific numerical goals, and the need to control greenhouse gas emissions and create new energy sources have become urgent issues. In order to solve these urgent issues while maintaining and improving industrial activities and quality of life, to weave together the creation of knowledge from entrance to exit are required, along with an awareness of green growth strategies. It is essential to secure new sources of energy with low envi- ronmental impact, promote the introduction of self-sufficient renewable energy, further develop energy-saving technologies, and so on. With the environment and energy cluster, we will rethink the conversion and creation of energy, which is essential for human activities and sustainable development, and promote a wide range of research and development, from basic to applied technologies, to solve environmental and energy problems in a wide range of time and space. ## ■ ナノ・マイクロクラスター/Nano-micro cluster # ナノ・マイクロスケールで発現する現象を解明し、あらゆる分野の技術開発への応用を目的とした統合流動科学の構築を目指します 近年の科学技術の発達により、ナノ・マイクロスケールの構造を有する機器の設計・製作が可能になり、またその加工技術の高精度化、微細化が進むにつれ、これらのスケールで発現する機能を応用した新しいタイプのデバイスの構築があらゆる分野で盛んに行われています。ナノ・マイクロクラスターではこのようなナノ・マイ クロスケールの現象をスーパーコンピュータや大規模実験設備を 用いた解析技術により解析し、流動科学の視点から包括的に理解 する学術分野の構築を目的として研究を推進します。またこれら の現象を利用した革新的デバイスや加工技術を開発し、様々な産 業分野における機器の多機能化・高性能化にも取り組みます。 # We aim to build an integrated flow science in which we analyze the phenomena that arise on a nano-micro scale and apply them to technological development in all fields Recent developments in science and technology have made it possible to design and manufacture equipment with nano and micro-scale structures. Moreover, owing to the increased precision and miniaturization of the processing technology, new types of devices which apply functions which arise on these scales are being built actively in all fields. The purpose of nano-micro cluster is to analyze such nano-micro scale phe- nomena using supercomputers and large-scale experimental facilities, and to build an academic field that comprehensively understands them from the perspective of fluid science. We will also develop innovative devices and processing technologies that utilize these phenomena to improve the function and performance of equipment in various industrial fields. ## ■ 健康・福祉・医療クラスター/ Health, welfare and medical cares cluster #### 統合流動科学により、ヒトの健康を守り快適に暮らすことができる社会を実現します 少子・高齢化社会が急速に進み、社会環境が大きく変化しています。将来に渡って健康で安心かつ豊かな暮らしを実現するために、高度な健康・福祉・医療技術の創出が期待されています。本クラスターでは、これらを実現するために、生体内の輸送現象や生体と物理刺激の相互作用現象を解き明かし、統合流動科学の新しい学理の構築を目指します。具体的には、ヒトに関わる診断・予測・計測・ モデル化手法の創成、生活環境と健康に関するデータ駆動型予測と保全、ヒトの機能の回復や付加、生体模擬環境の開発による脳卒中や心臓疾患治療への応用、感染症やガンなどに関わる予防・治療や診断・予測、プラズマ医療、再生医療を促進するタンパク質や細胞の処理技術の開発などの研究に取り組みます。 #### We aim to realize a healthy and comfortable society through integrated flow science The social environment is changing drastically due to the rapidly aging society and declining birthrate. The creation of advanced health, welfare, and medical technologies is necessary in order to realize and keep a healthy, secure, and affluent life. This cluster aims to construct new theories of integrated fluid science by clarifying transport phenomena in living organisms and interaction phenomena between living organisms and physical stimuli. Specifically, we aim to develop methods for diagnosis, prediction, measurement, and modeling related to humans; data-driven prediction and conservation related to the living environment and health; recovery and addition of human functions; application to the treatment of stroke and heart disease through the development of biomodels; prevention, treatment, diagnosis, and prediction related to infectious diseases and cancer; plasma medicine; and regenerative medicine. We are also working on the development of protein and cell processing technologies. ## ■ 宇宙航空クラスター/ Aerospace cluster ## 統合流動科学により、宇宙機・航空機に関連する流れ場における現象を解明し、宇宙航空分野の発展 に寄与することを目指します 次世代の革新的な宇宙機・航空機の開発には、高温・高圧や極低温、希薄大気などの極限環境の流れ、相変化を伴う混相流やプラズマ・燃焼などの化学反応を伴う流れ、ナノ・マイクロ・マクロスケールの時空間における流れなど、多種多様な流れ場の理解が必要とされます。またカーボンニュートラルな国際社会を目指す上で必要なグリーン成長戦略からは高効率な機体およびエンジンの開発を行う必要があり、宇宙機・航空機に関わる流れ場を高精度に制御 しなければなりません。宇宙航空クラスターでは、宇宙機・航空機 周りやそれらのエンジンシステムに関連する流れ場における現象 の解明とその制御のために、風洞やスーパーコンピュータなどを 利用した流れ場解析、数理的・データ科学アプローチなどの統合流 動科学の視点から包括的に理解する学術分野の構築を目的として 研究を推進します。 #### We aim to contribute to the development of the aerospace field by clarifying the phenomena in the flow field related to spacecrafts and aircrafts through integrated flow science The development of innovative spacecrafts and aircrafts for the next generation requires an understanding of a wide variety of flow fields, including flows in extreme environments such as high-temperature, high-pressure, cryogenic temperature, and rarefied atmosphere, multi-phase flow with phase change and
plasmas/combustion flow with chemical reactions, and nano/micro/macroscale spatiotemporal flow. In addition, the development of highly efficient airframes and engines is necessary for green growth strategies to achieve a carbon-neutral international society, and the flow fields associated with spacecrafts and aircrafts must be controlled with high precision. Aerospace cluster aims to establish an academic field that comprehensively understands the phenomena from the viewpoint of integrated flow science, including flow field analysis using wind tunnels and supercomputers and mathematical and data science approaches. ## 流体科学国際研究教育拠点 Fluid Science Global Research and Education Hub 流体科学研究所は、2010年度より流体科学分野の共同利用・共同研究拠点として文部科学省に認定され、2016年度には、同拠点「流体科学国際研究教育拠点」として認定更新されています。所外研究者と本研究所の教員とが協力して公募共同研究を実施するとともに、研究所主催国際シンポジウムでの研究成果報告会の開催や研究成果報告書の出版等を通して研究成果を社会に発信しています。 Since April 2010, the Institute of Fluid Science has been acknowledged as the Joint Usage/Research Center, by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In 2016, IFS was approved as the Center "Fluid Science Global Research and Education Hub". We have implemented a collaborative research project, in which our staff works with researchers from other organizations. We also communicate research results to society through the holding of the Collaborative Research Forum as part of the International Symposium hosted by IFS, as well as by the publication of activity reports. ### ■ 「流動ダイナミクスに関する国際会議・ICFD」の開催と拠点形成/ International Conference on Flow Dynamics (ICFD) 「流動ダイナミクスに関する国際会議:ICFD (International Conference on Flow Dynamics)」は、流動ダイナミクス分野では「世界最大級」の国際学会として2004年から毎年仙台で開催されています。 本会議では、流動ダイナミクスに関する学際的な学術交流だけでなく、世界的に著名な研究者による基調講演、専門分野別オーガナイズドセッションが行われています。独自の特色としては、流体科学研究所公募共同研究フォーラム、リエゾンオフィス会議や学 生が自主運営する学生セッションがあります。 また、ICFDでは世界各国の研究者で構成される国際科学委員会を組織し、本国際会議の方向性を議論して、流動ダイナミクスの全世界的な研究拠点として確立しています。 第20回流動ダイナミクスに関する国際会議(ICFD2023)は、23カ国698名の研究者および学生が参加し、11月6日から8日にかけて、仙台国際センターにてハイブリッド形式で開催されました。 International Conference on Flow Dynamics (ICFD) is held in Sendai in annual series since 2004. The ICFD is now recognized by world researchers as one of the biggest and most important international conferences in the field of Flow Dynamics. The objectives of this conference are to explore new horizons in science by discussing and exchanging information related to the most advanced scientific fields in Flow Dynamics. This conference, which is very unique, is composed of plenary lectures and disciplinary organized sessions including "IFS Collaborative Research Forum", "Liaison Office Session" and "Student Ses- sion" which is organized by students. The ICFD organizes an International Scientific Committee (ISC) by researchers from around the world discussing the direction of further growth of ICFD in the future. It is established as a global center in the field of Flow Dynamics. Twentieth International Conference on Flow Dynamics (ICFD2023) was held on November 6 - 8, 2023 at Sendai International Center as a hybrid fashion -both in-person and online. The number of participants was 698 which were from 23 countries ## ■ 公募共同研究/Collaborative Research Project 流体科学研究所では、環境・エネルギー、ナノ・マイクロ、健康・福 祉・医療、宇宙・航空、基盤分野における流体科学に係わる研究課題 を広く国内外より募集し、低乱熱伝達風洞、衝撃波関連施設、次世 代融合研究システム等の研究設備を利用した所外研究者と所内研 究者との共同研究を実施しています。共同研究で得られた成果の 発信と研究者の交流を進めるため、毎年、流体科学研究所主催の国 際シンポジウム(AFI)において、公募共同研究成果報告会を開催し ています。 The Institute of Fluid Science (IFS) promotes collaborative research between researchers of institutes both within and outside the country and those of IFS on research topics related to fluid science in Environment and energy, Nano-micro, Health, welfare and medical cares, Aerospace, and other fundamental fields utilizing research facilities such as the Low-Turbulence Wind Tunnel Facility, Shock Wave Research Facilities, and Integrated Supercomputation System. Every year IFS holds the Collaborative Research Forum in the International Symposium on Advanced Fluid Information (AFI), which it also hosts, in order to present the results of collaborative research and exchange between researchers. # 国際流動科学ウェビナー International Flow Dynamics Webinar 新型コロナウイルスにより国際交流が停滞する中、流体科学に関する新しい情報発信、情報交換、研究交流の場を世界に対して提供す る国際流動科学ウェビナー(International Flow Dynamics Webinar)を立ち上げ、流体科学の国際拠点化を促進します。 While international exchange is stagnant due to the COVID-19, we will launch an International Flow Dynamics Webinar that provides the world with a forum for new information dissemination, information exchange, and research exchange on fluid science, and promote the establishment of an international hub for fluid science. ## 研究拠点形成事業 Core-to-Core Program ## ■ 低炭素社会の実現に向けたアンモニア燃焼・材料国際研究交流拠点の構築/ Construction of an International Research Exchange Center for Ammonia Combustion and Materials toward the Realization of a Low-Carbon Society 世界的なゼロカーボン社会の達成に向けて、その解決方策の重要な技術の1つである「アンモニア燃焼技術」の学理構築および社会実装を目指します。特に、「燃焼」「材料」「物性」の観点からシステムを構成する機器の性能を評価する新たな学術領域を構築します。このために、東北大学を中心とする日本チーム、リヨン大学を 中心とするフランスの研究チーム、ワシントン大学を中心とする アメリカの研究チーム、アブドラ王立科学技術大学を中心とする サウジアラビアの研究チームからなる研究組織を構成することに より、研究を加速させます。 To achieve zero-carbon society in the world, we aim to make the theory and the social implementation of "ammonia combustion technology", which is one of the important technologies to achieve the society. In particular, we will construct a new academic field to evaluate the performance of the equipment of the ammonia combustion system from the perspectives of "combustion", "material" and "property". To achieve this aim, researches are accelerated by organizing the international research network consisting of Japanese team centered on Tohoku University, French team centered on University of Lyon, American team centered on University of Washington and Saudi Arabian team centered on King Abdullah University of Science and Technology. ## Construction of ammonia combustion/material research center Core-to-Core プログラム「低炭素社会の実現に向けたアンモニア燃焼・材料国際研究交流拠点の構築」の概要 Overview of the Core-to-Core Program "Construction of an international research exchange center for ammonia combustion and materials toward the realization of a low-carbon society" ## 国際交流 #### International Exchange 流体科学研究所は流体科学における研究拠点として国際交流活動を推進しています。リエゾンオフィスなどの海外拠点や国際ネットワー クを活用し、国内外の主要研究機関との共同研究や研究交流を行って学術の進歩に貢献しています。また、東北大学の理念である「門戸開 放」を実践し、流体科学研究所の教職員・学生の海外派遣や国内外の多様で有能な人材の積極的な受入れにより、国際的リーダーシップを 発揮できる研究者・技術者を育成しています。 As a center of fluid science research, the Institute of Fluid Science promotes international cooperative efforts. We are contributing to scientific advancements through the utilization of our international network, including liaison offices and other international foundations, and by actively participating in research exchange and collaborative research with major research organizations both in-and outside the country. Furthermore, we implement the "Open-Door" policy of Tohoku University and cultivate researchers and engineers that can exhibit international leadership by sending our faculty and students abroad, and actively seeking out various talented individuals, both nationally and internationally, to work with us. #### ■ リエゾンオフィス / Liaison Offices フランス France リヨン大学 Universite de Lyon 韓国 Korea 韓国科学技術院 Korea Advanced Institute of Science and Technology ロシア Russia モスクワ国立大学 Moscow State University 米国 U.S.A シラキュース大学 Syracuse University オーストラリア Australia ニューサウスウェールズ大学 The University of New South Wales スウェーデン Sweden 王立工科大学 KTH Royal Institute of Technology 国立陽明交通大学 National Yang Ming Chiao Tung University 一世界トップレベルの研究機関との共同研究により最先端の研究を推進一 -Promoting cutting edge research through collaborative efforts with the leading research organizations in the world- ★リエゾンオフィス(7) Liaison Offices ●大学間交流協定(31) University Level Agreements 部局間交流協定(14) Department Level Agreements ## ■ 大学間協定/University Level Agreements | | 韓国
Korea | 韓国科学技術院(KAIST) Korea Advanced Institute of Science and Technology 成均館大学校 Custom Plantage Hair pareity | | | | | | |---------------------|-----------------------|---|--|--|--|--|--| | | シンガポール
Singapore | Sungkyunkwan University シンガポール国立大学 National University of Singapore | | | | | | | アジア | 台湾 | 国立中央大学
National Central University | | | | | | | Asia | Taiwan | 国立陽明交通大学
National Yang Ming Chiao Tung University | | | | | | | | | 清華大学
Tsinghua University | | | | | | | | 中国
China | 西安交通大学
Xi'an Jiaotong University
上海交通大学 | | | | | | | | | Shanghai Jiao Tong University | | | | | | | アフリカ
Africa | 南アフリカ
South Africa | ヨハネスブルグ大学
Univerity of Johannesburg | | | | | | | オセアニア | オーストラリア | シドニー大学
The University of Sydney | | | | | | | Oceania | Australia | ニューサウスウェールズ大学
The University of New South Wales | | | | | | | | | シラキュース大学
Syracuse University | | | | | | | 北米
North America | アメリカ合衆国
U.S.A. | ミシガン州立大学
Michigan State University | | | | | | | | | パーデュー大学
Purdue University | | | | | | | | イタリア
Italy | ナポリ大学
University of NAPLES FEDERICO II | | | | | | | | スイス
Switzerland | スイス連邦工科大学ローザンヌ校
Ecole Polytechnique Federale de Lausanne | | | | | | | | スウェーデン
Sweden | スウェーデン王立工科大学
KTH Royal Institute of Technology | | | | | | | | | カールスルーエ工科大学
Karlsruhe Institute of Technology | | | | | | | | | アーヘン工科大学
University of Technology Aachen | | | | | | | | ドイツ
Germany | ザールラント大学
Saarland University | | | | | | | | | ドイツ航空宇宙センター
Deutsches Zentrum für Luft- und Raumfahrt e.V.(DLR) | | | | | | | | | ダルムシュタット工科大学
Technical University of Darmstadt | | | | | | | ヨーロッパ
Europe | | 国立中央理工科学校5校(リール、リヨン、メディテラネ、ナント、セントラルスピレック) The Group of Écoles Centrale (Centrale Lille Institut, Centrale Lyon, Central Méditerranée, École Centrale de Nantes, École CentraleSupélec) | | | | | | | | | 国立応用科学院リヨン校
Institute National des Sciences Appliquees de Lyon(INSA-Lyon) | | | | | | | | フランス
France | リヨン大学
Université de Lyon | | | | | | |
| | 国立応用科学院グループ(INSA グループ)
Institut National des Sciences Appliquées (Groupe INSA) | | | | | | | | | フランス国立科学研究センター(CNRS)
French National Centre for Scientific Research | | | | | | | | | ロシア科学アカデミーシベリア支部
Siberian Branch of Russian Academy of Sciences | | | | | | | | ロシア | モスクワ国立大学
Moscow State University | | | | | | | | Russia | 極東連邦大学
Far Eastern Federal University | | | | | | | | | ロシア科学アカデミー極東支部
Far Eastern Branch, Russian Academy of Sciences(FEB-RAS) | | | | | | ### ■ 部局間協定/ Department Level Agreements | | 韓国
Korea | ソウル大学校航空宇宙学科
Department of Aerospace Engineering, Seoul National University | |---------------------|-----------------|---| | | | 長庚大学工学部
Colledge of Engineering, Chang Gung University | | アジア
Asia | 台湾
Taiwan | 国立応用研究所·台湾半導体研究所
Taiwan Semiconductor Research Institute (TSRI), National Applied Research
Laboratories | | | | 国立清華大学動力機械工学系
Department of Power Mechanical Engineering, National Tsing Hua University | | | 中国
China | 重慶理工大学車両工学部
College of Vehicle Engineering, Chongqing University of Technology | | | アメリカ合衆国 | シラキュース大学計算科学·工学部
College of Engineering and Computer Science, Syracuse University | | 北米
North America | U.S.A. | ミシガン大学工学部
College of Engineering, University of Michigan | | | カナダ
Canada | トロント大学航空宇宙研究所
University of Toronto Institute for Aerospace Studies (UTIAS) | | | イタリア
Italy | トリエステ大学建築工学部
Department of Engineering and Architecture, University of Trieste | | | チェコ
Czech | チェコ科学アカデミープラズマ物理研究所
Institute of Plasma Physics, Academy of Sciences of the Czech Republic | | ヨーロッパ | ハンガリー | エトヴェシュ・ロラーンド研究グループエネルギー研究センター物理材料技術研究所
Institute of Technical Physics and Materials Science, Centre for Energy Research,
Eötvös Loránd Research Network | | Europe | Hungary | センメルワイス大学医学部
Faculty of Medicine, Semmelweis University | | | フランス
France | オルレアン大学
University of Orléans | | | ポーランド
Poland | ヴロツワフ工科大学
Wroclaw University of Technology | (2025年1月1日現在) (As of January 1, 2025) # 教育 流体科学研究所は約70名の学部学生と約160名の大学院生が所属しています。流体科学研究所の多くの教員が大学院工学研究科機械系の協力講座として大学院教育・学部教育を行っています。また、情報科学研究科、環境科学研究科、医工学研究科にも協力講座として大学院教育を行っています。 About 70 undergraduates and 160 graduate students belong to the Institute of Fluid Science (IFS). Many of our Faculty members teach both graduate and undergraduate students through cooperative courses with the Graduate School of Engineering. We also provide graduate level education through cooperative courses with the Graduate School of Information Sciences, Environmental Studies, and Biomedical Engineering. ## ■ 流体科学研究所博士前期課程学生海外発表促進プログラム/ IFS Graduate Student Overseas Presentation Promotion Award 流体科学研究所は流体科学に関わる国際研究教育拠点として、 流動ダイナミクスに関連して世界的に活躍できる若手人材の育成 を推進しています。この方針にもとづき、博士前期課程の学生が国 際的な場で発表する経験と実績を積む機会を与えるために、発表 のための渡航を支援しています。 Institute of Fluid Science, which is an international research and education center in the field of fluid science, is actively involved in the training of talented young people who can play an active role internationally in the field of fluid science. To this end, mas- ter degree students are given the chance and encouraged to participate in international conferences in order build up their record of practical experience with the support of IFS. #### 流体科学研究所博士前期課程学生海外発表促進プログラム/ IFS Graduate Student Overseas Presentation Award | 年度
Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | |------------------------------|------|------|------|------|------|------| | 渡航者数
Number of Dispatches | 10 | 13 | 0* | 7** | 11 | 9 | - * 新型コロナウイルス感染症の感染拡大により派遣は実施していない。 - * Due to the spread of the COVID-19 infection, no dispatch has been conducted. - ** オンライン ・ ** Online ## ■ 流体科学研究所附属統合流動科学国際研究教育センター海外派遣プログラム/ IFS-GCORE Overseas Study Program 統合流動科学国際研究教育センターでは、リヨン大学(フランス)・アブドラ王立科学技術大学(サウジアラビア)、ワシントン大学(アメリカ)、国立陽明交通大学(台湾)、CREATE拠点(シンガポール)との共同研究を推進することにより、「統合流動科学」を学術基盤として、真に社会が必要とする新たな工学領域を開拓することを目指しています。本プログラムでは、各拠点との共同研究を推進す る学生や若手研究者を現地に派遣することにより、各拠点と流体 科学研究所の共同教育・共同研究やジョイントラボ・リエゾンオフィ スを通じた活動を推進することを目的としています。「博士前期課 程学生海外インターンシップ派遣」「博士後期課程学生海外派遣」 「若手教員海外派遣」の3つのプログラムで構成されています。 The Global Collaborative Research and Education Center for Integrated Flow Science (IFS-GCORE) aims to develop a new engineering field that is truly needed by society based on the academic foundation of "Integrated Fluid Science" by promoting joint research with University of Lyon (France), King Abdullah University of Science and Technology:KAUST (Saudi Arabia), University of Washington (United States), National Yang Ming Chiao Tung University (Taiwan) and CREATE basis (Sin- gapore). This program is designed to promote joint education, joint research and joint laboratory/liaison office activities between each institute and the Institute of Fluid Science by sending students and young researchers who will carry out joint research with each institute. This program is consisted of three components: Internship Program for Master Students, Overseas Dispatch Programs for Doctoral Students and for young researchers, respectively. #### 流体科学研究所附属統合流動科学国際研究教育センター海外派遣プログラム/IFS-GCORE Overseas Study Program | 年度
Year | 2022 | 2023 | |--|------|--------| | 博士前期課程学生海外インターンシップ派遣プログラム
Master's Course Student Overseas Internship Program | 0 | 12(10) | | 博士後期課程学生海外派遣プログラム
Doctoral Course Student Overseas Study Program | 4(4) | 8(6) | | 若手教員海外派遣プログラム
Young Faculty Overseas Study Program | 0(0) | 3(0) | ※年度をまたいだ派遣は年度ごとに延べ人数でカウント。 - * Dispatch across fiscal years is counted in total number of persons per fiscal year. - ※()は内数で、1か月以上の長期派遣者数。 - *() is the number of long-term dispatchers for more than one month within the total number of dispatchers. ## ■ ボーイング高等教育プログラム/ Boeing Higher Education Program 米国The Boeing Company の Grant を受け、学生主体の様々 なプロジェクトを実施しており、2023-24年度は研究プロジェク ト1件とものづくりプロジェクト5件を支援しています。また、毎 年Boeing Externship Programとしてインターネット経由で Boeing社の技術者から英語で授業を受け、世界の将来を担うべき 優れた科学者・エンジニアの育成を目指しています。 With a grant from The Boeing Company, U.S.A., various student-led projects are carried out. In 2023-2024, we support one research project and five development projects. Moreover, students receive classes in English from technicians of The Boeing Company over the Internet, through the Boeing Externship Program each year. We seek to train gifted scientists and engineers who will bear the future of the world. ## ■ 国際宇宙大学派遣制度/ International Space University - Space Studies Program - 流体科学研究所は流体科学に関わる国際研究教育拠点として、 世界的に活躍できる若手人材育成を推進しています。毎年世界30 カ国から第一線級の若手研究者や学生が100人ほど参加する国際 宇宙大学SSPは独自の教育プログラムを有し、本研究所の若手人 材育成の目的に沿った教育理念を掲げています。流体科学研究所 からは、1990年より継続して、多数の学生を派遣しております。 As a base of an international research education, the Institute of Fluid Science has promoted the development of human resources by training young people to play an active role in the world. Approximately 100 leading young researchers and students from 30 countries around the world participate in the International Space University's original educational program, SSP, which has the same educational concept in line with the purpose of this research institute to develop young human resources. The Institute of Fluid Science has been dispatching many students to this program since 1990. ## ■ 学術交流協定を利用した学生交流推進プログラム/ Graduate Student Exchange Program based on the Academic Exchange Agreement 大学間学術交流協定、部局間学術交流協定では、学生交流の細則 を締結し、授業料不徴収の規定を適用しています。本プログラムは、 その授業料不徴収の規定を適用して受け入れる大学院生を雇用し て滞在費を支援することで、交流協定を利用した学生交流を活性 化させることを目的としています。 The university has scientific exchange agreements with other universities and such agreements between departments. Detailed rules of student exchanges have been concluded, which include the waiver of tuition for exchange students. To help graduate exchange students meet their living expenses, employment is also available. ## 産学連携 #### **Industry-University Cooperation** 東北大学は、建学以来、「研究第一主義」「門戸開放」「実学尊重」の理念を掲げ、世界トップレベルの研究・教育を行ってきました。研究成果を広く社会に還元すると共に、産業界への技術移転を積極的に推進し、関係機関との連携により産学連携活動を推進しています。流体科学研究所では産学連携室を設けて、企業等との共同研究を進めています。 Since its founding, Tohoku University's policy has been to put "Research First", maintain an "Open Door" policy, and focus on "Practice-Oriented Research and Education". As a result, our research results have been of great practical benefit to society. Moreover, the university has vigorously promoted university-industry technology transfer, and works actively with related agencies to support industry-university cooperation. The Institute of Fluid Science (IFS) has set up an Industry-University Liaison Office to promote industry-related funded research and joint research, and to solicit grants and contributions from private industry. #### 東北大学/台湾国立陽明交通大学国際ジョイントラボラトリーと国際産学連携活動 東北大学/台湾国立陽明交通大学国際ジョイントラボラトリー、 産業技術総合研究所(AIST)、國研院台灣半導體研究中心(TSRI) の国際共同研究により、新構造トランジスタの開発に世界で初め て成功しました。 今後は、本連携を基盤として、自立型水素エネルギーシステム、 グリーンナノテクノロジー、バイオメディカルセンサーネットワー ク分野における国際産学連携活動、国際研究教育活動を通じ、社会 課題解決に貢献します。 # Joint Laboratory by Tohoku University and National Yang Ming Chiao Tung University, and International Industry-Academia Collaborations International joint research by the joint laboratory by Tohoku University and National Yang Ming Chiao Tung University, the National Institute of Advanced Industrial Science and Technology (AIST), and the Taiwan Semiconductor Research Institute (TSRI) has delivered a world-first success in developing transistors with a new structure. In future, we will use this partnership as the basis for developing international industry-academia collaborations and international research and education activities in the fields of independent hydrogen energy systems, green nanotechnology, and biomedical sensor networks to contribute to solutions for social issues. #### アンモニア燃焼の共同研究 アンモニアは、2050年カーボンニュートラルに向けたCO₂フリー 燃料として重要な役割を果たすことが期待されている。アンモニ ア燃焼には低燃焼性、Fuel NOx生成、低輻射性などの課題があっ
たが、2014年から5年間に渡り実施されたSIPエネルギーキャリ アプロジェクトにおける研究開発により、旋回流によるアンモニ ア火炎の安定化、過濃ー希薄二段燃焼による低NOx化が達成され、 特に発電部門、工業部門でのアンモニア燃焼の可能性が明らかに なった。本共同研究では、SIPプロジェクトの成果を発展させ、ア ンモニアガスタービンにおいてエネルギー効率や出力調整の面で メリットが大きい、アンモニアを液体のまま加圧し高圧燃焼器内 に直接噴射する液体アンモニア噴霧燃焼の研究開発をIHI、産総研 と共同で実施している。液体アンモニアの蒸発潜熱は炭化水素燃 料に比較して格段に大きいため、蒸発直後に温度が急激に低下す る問題があった。そこで、供給空気を予熱し強い旋回流を与えるこ とにより大気圧下で純アンモニア噴霧燃焼の安定化に成功し(図1)、 さらに、液体アンモニアの噴霧蒸発挙動(図2)の研究も進めている。 これらは、ガスタービン発電において現在の主燃料である天然ガ スをアンモニア混焼、アンモニア専焼に置き換えていくために不 可欠な基盤研究である。 #### Collaboration Research on Ammonia Combustion Ammonia is expected to play an important role as a CO₂-free fuel toward carbon neutrality in 2050. Research and development in the SIP Energy Carrier Project, which was conducted for five years from 2014, has achieved stabilization of ammonia flame by swirling flow, and low NOx emission by Rich-Lean two-staged combustion. From the project, and the potential of ammonia combustion, especially in the power generation and industrial sectors, has been clarified. In collaboration with IHI and AIST, we are extending the outcome of the SIP project and conducting R&D on liquid ammonia spray combustion, in which ammonia is pressurized in liquid form and injected directly into a high-pressure combustor. Liquid ammonia spray combustion has significant advantages in terms of energy efficiency and power regulation in ammonia gas turbines. Since the latent heat of evaporation of liquid ammonia is much higher than that of hydrocarbon fuels, there has been a problem of a sudden drop in temperature immediately after evaporation. To solve this problem, we have succeeded in stabilizing pure ammonia spray combustion under atmospheric pressure by preheating the supply air and providing a strong swirl flow (Fig. 1). We are also studying the spray evaporation behavior of liquid ammonia (Fig. 2). These studies are indispensable for replacing natural gas, which is the current main fuel for gas turbine power generation, with ammonia co-firing and single ammonia combustion. 図1 500 K に予熱された高温旋回空気流中に安定化された純アンモ Fig.1 Pure ammonia spray flame stabilized in a high-swirl air-flow preheated at 500 K 図2 大気圧下における液体アンモニア噴霧のバックライト画像 Fig.2 A back lit image of liquid ammonia spray at atmospheric pressure ## 社会貢献 #### Contribution to Society 研究活動を小学生から大人まで広く一般市民に公開し、交流を深め、社会貢献に努めています。また、流体科学に関する最先端の研究を通じて、社会が直面する諸問題の解決を目指して取り組んでいます。 As a member of the community, we make our research efforts available to a wide spectrum of the general public from elementary school students to adults. And also, we contribute to society by solving various problems through the world-class fluid science researches. #### みやぎ県民大学 流れに関する授業を毎年50人程の一般市民を対象に、4回の異なった授業を行っています。 #### Open Lecture for Citizens of Miyagi Prefecture Ever year, four different classes about fuids are taught to about 50 members of the general public. #### 研究所一般公開(片平まつり) 一般市民を対象としたオープンキャンパスで、片平地区の研究所の一員として積極的に参加しています。 #### Research Facilities Open House (Katahira Festival) As one of the research facilities in the Katahira area, we always participate in the open campus, which is targeted at members of the general public. #### ペットボトル出前授業 小·中学校へ出向いての授業を行っています。これはペットボトルロケットを作って飛ばしてみる 授業です。 #### PET Bottle Rocket School for Kids We go to elementary and middle schools and give lessons to the children, in which they make PET bottle rockets and get to launch them. #### 日本宇宙少年団(仙台たなばた分団) 地域の子供たちを対象に、宇宙や科学をテーマとした教育活動を実施しています。パラシュートモデルを子供たちと一緒に作り、実験を行いました。 #### Young Astronauts Club (Sendai Branch) The members of the branch provide education of space technology and natural science for the children. The children made parachutes with the members, and they were able to experiment by using theirs. #### 東北大学Windnauts 学生が飛行機を設計・制作、操作までを担当し、滋賀県の琵琶湖で行われる競技で優勝を果たした 東北大学Windnautsを流体科学支援基金等で支援しています。 #### **Tohoku University Windnauts** Through the Institute of Fluid Science Fund, etc., we are supporting Tohoku University Windnauts, which was designed, built, and fly the plane by students, and won the competition held at Lake Biwa in Shiga Prefecture, Japan. #### サイエンスデイ 地域の子供たちを対象にした科学教育イベント「サイエンスデイ」に出展し、空気の力を体験してもらうためにホバークラフトの工作を行いました。 #### Science Day We participated in Science Day which is the science education event for children, and we provided children a lecture of hovercraft to experience science of fluid. # 教職員数・経費及び建物 Staffs · Expenses and Building #### 常勤職員数(2024年5月1日) Number of Full-Time Staffs (May 1, 2024) (単位:人) | 教授 | 准教授 | 助教 | 特任教授 | 特任准教授 | 特任助教 | 特任研究員 | 事務職員 | 技術職員 | 限定正職員 | 合計 | |------------|------------|------------|-----------|------------|------------|-----------|----------------|-----------|----------|--------| | Professors | Associate | Assistant | Specially | Specially | Specially | Specially | Administrative | Technical | Limited | Total | | | Professors | Professors | Appointed | | | | Staff | | Regular | | | | | | Professor | | | Research | | | Employee | | | | | | | Professors | Professors | Fellow | | | | | | 16(1) | 12(4) | 11(2) | 1(0) | 3(0) | 4(2) | 8(1) | 9(2) | 13(0) | 13(11) | 90(21) | ※()内全て内数で女性を示す ** Numbers in parenthesis represent the number of females, and are included in the totals #### 学生数(2024年5月1日) Number of Students (May 1, 2024) (単位:人) | 学部4年生 | 博士前期課程1年生 | 博士前期課程2年生 | 博士後期課程1年生 | 博士後期課程2年生 | 博士後期課程3年生 | 合計 | |-------|-----------|-----------|-----------|-----------|-----------|--------| | B4 | M1 | M2 | D1 | D2 | D3 | Total | | 32(0) | 56(2) | 52(4) | 19(1) | 13(0) | 21(0) | 193(7) | ※()内全て内数で女性を示す * Numbers in parenthesis represent the number of females, and are included in the totals 経費(2023年度) Expenses (FY2023) (単位:百万円) (Units: Million yen) | 運営費交付金
Operation Gran | nts 1,653 | 外部資金
External Fundir | ng | | | | 1,157 | |------------------------------|------------------------------|--|--|-------------------------------------|------------------------------------|---------------|-----------------------------------| | 人件費
Personnel
Expenses | 物件費
Operation
Expenses | 科学研究費
Grants-in-Aid
for Scientific
Research | 受託研究費
Sponsored
Research
Fund | 共同研究費
Joint Research
Expenses | 受託事業費
Sponsored
Project Fund | 補助金
Grants | 奨学寄付金
Scholarship
Donations | | 643 | 1,010 | 240 | 477 | 291 | 61 | 65 | 23 | 外部資金 Outside Research Grants | 費 目
Category | 2018 (平成30年度) | 2019
(令和元年度) | 2020
(令和2年度) | 2021
(令和3年度) | 2022
(令和4年度) | 2023 (令和5年度) | |---------------------------------|---------------|-----------------|-----------------|-----------------|-----------------|--------------| | 科学研究費
Scientific research | 189 | 155 | 160 | 216 | 232 | 240 | | 受託研究費
Contract research | 374 | 238 | 366 | 425 | 560 | 477 | | 共同研究費
Joint research | 143 | 152 | 117 | 106 | 205 | 291 | | 受託事業費
Sponsored Project Fund | 7 | 34 | 18 | 30 | 27 | 61 | | 預り補助金
Other Grants | 7 | 2 | 5 | 16 | 56 | 65 | | 寄附金
Donations | 11 | 9 | 13 | 10 | 13 | 23 | | 合 計
Total | 731 | 590 | 679 | 803 | 1,093 | 1,157 | ※間接経費を含む (単位:百万円) (Units: Million yen) #### 建物 Building | 建物延べ面積
Total Building Area | 13,167m² | | |-------------------------------|----------|--| |-------------------------------|----------|--| ## 研究活動 #### Research Activities #### 研究論文の件数 Number of Published Papers | 項目
Type | 2019
(令和元年) | 2020
(令和2年) | 2021
(令和3年) | 2022
(令和4年) | 2023
(令和5年) | |---|----------------|----------------|----------------|----------------|----------------| | オリジナル論文 * ¹ (英語)
Original articles * ¹ (English) | 217 | 164 | 189 | 172 | 189 | | オリジナル論文(英語以外)
Original articles (others) | 5 | 9 | 15 | 10 | 6 | | 国際会議での発表 *2
Presentations at international conferences *2 | 388 | 303 | 309 | 329 | 333 | | 国内会議での発表
Presentations at Japanese conferences | 261 | 256 | 296 | 283 | 290 | | 合計
Total | 871 | 732 | 809 | 794 | 818 | ^{*&}lt;sup>1</sup> オリジナル論文とは、査読のある学術誌あるいはそれに相当する評価の高い学術誌、Proceedings等に掲載された査読付き原著論文、ショー トノート、速報および招待論文、解説論文などを指す。査読のないProceedings、論文、講演要旨、アブストラクトなどは除外する。 上記オリジナル論文に該当するものを除く。 *2 Excluding any original articles or equivalent included above. #### 国際共同研究の件数 Number of International Joint Research | 項目
Type | 2019
(令和元年度) | 2020
(令和2年度) | 2021
(令和3年度) | 2022
(令和4年度) | 2023
(令和5年度) | |---|-----------------|-----------------|-----------------|-----------------|-----------------| | 個別共同研究
Individual collaborative research | 60 | 51 | 52 | _ *5 | _ *5 | | 公募共同研究
IFS collaborative research project | 56 | 60 | 70 | 50 | 51 | | リーダーシップ共同研究
Discretionary collaborative research project | 3 | 5 | 0 | 3 | 3 | | 合計
Total | 119 | 116 | 122 | 53 | 54 | #### 国内共同研究の件数 Number of Domestic Collaborative Research Projects | 項目
Type | 2019
(令和元年度) | 2020
(令和2年度) | 2021
(令和3年度) | 2022
(令和4年度) | 2023
(令和5年度) | |---|-----------------|-----------------|-----------------|-----------------|-----------------| | 民間等との共同研究 *1
Research collaborations with private industry *1 | 58 | 65 | 72 | 77 | 80 | | 受託研究 *2
Funded research *2 | 30 | 36 | 52 | 48 | 48 | | 寄附金 *3
Donations *3 | 12 | 13 | 11 | 13 | 19 | | 個別共同研究 * ⁴
Individual collaborative research * ⁴ | 134 | 133 | 91 | _ *5 | _ *5 | | 公募共同研究
IFS collaborative research project | 50 | 44 | 38 | 45 | 35 | | リーダーシップ共同研究
Discretionary collaborative research project | 16 | 17 | 17 | 18 | 20 | | 合計
Total | 300 | 308 | 281 | 201 | 202 | *1 国立大学法人東北大学共同研究取扱規程に基づいて、民間機関等から研究者(共同研究)および研究経費等を受け入れて行った研究。 *2 国立大学法人東北大学受託研究取扱規程等に基づき、他の公官庁または会社等から委託を受けて行った研究。 *3 国立大学法人東北大学寄附金事務取扱要項による寄附金。 *4 上記3項に該当しない研究で研究費或いは研究者の受け入れがあるか、または共著論文(講演論文集等を含む)のある共同研究。公募共同およびリーダーシップ共同研究を除く。 *5 東北大学データース仕様変更に伴い算出しない。 *1 Percental profession with responsible of the of the profession with responsible of the profession of the profession with
responsible of the profession of the profession with responsible of the profession professi - *1 Research performed in collaboration with researchers from private organizations (collaborative research), or conducted using funds provided by private organizations, in accordance with the guidelines of Tohoku University governing the management of joint research. - *2 Research performed under contract with other government agencies or private businesses, in accordance with the guidelines of Tohoku University governing the management of joint research. - Grants received in accordance with Tohoku University guidelines governing the acceptance of donated funds. *4 Joint research projects not covered in items 1-3 above, involving the receipt of research funds or use of outside researchers, or resulting in publication of articles with joint authorship (including proceedings, etc.), excepting for IFS collaborative research project and Discretionary collaborative research project. *5 Not calculated due to changes in Tohoku University database specifications. ^{*1} Original articles include papers published in peer-reviewed journals or other journals of equivalent quality, peer-reviewed articles, short notes, or rapid communications published in proceedings, as well as invited articles and review articles. Non-peer-reviewed proceedings, articles, summaries of oral presentations and abstracts are excluded. # 褒章•受賞 #### **Awards** #### 褒章 Medals of Honor | 氏名
Name | 受賞名(機関・団体)
Name of Award (Agency/Body) | 受賞内容
Research | 受賞年月日
Date of Award | |----------------------------|--|--|----------------------------| | 南部 健一
Kenichi Nanbu | 紫綬褒章(日本政府)
Purple Ribbon Medal
(Japanese Government) | ボルツマン方程式の厳密な確率解法やプランク方程式の一般
解法を導いた
Derivation of an exact stochastic solution of the Boltzmann
equation and a general solution of the Planck equation | 2008.4.29
Apr. 29, 2008 | | 圓山 重直
Shigenao Maruyama | 紫綬褒章(日本政府)
Purple Ribbon Medal
(Japanese Government) | 熱工学分野を進化させ、また異分野との交流により人工心肺やクライオブローブの開発、大規模自然対流を応用した海洋深層水の汲上げなど新たな研究を展開した
Evolution of the field of Thermal Engineering and development of novel research on such thing as an artificial heart, cryoprobe, measurement of upwelling velocity of deep seawater to which natural convection is applied, and so on by collaborating with researchers in different research fields. | 2012.4.29
Apr. 29, 2012 | #### 科学技術分野の文部科学大臣表彰 The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology | The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology | | | | |---|--|--|----------------------------| | 氏名
Name | 受賞名
Name of Award | 受賞対象の研究
Research | 受賞年月日
Date of Award | | 小林 秀昭
Hideaki Kobayashi | 平成29年度·科学技術賞(研究部門)
Awards for Science and Technology
(Research Category), 2017 | 極限環境条件における燃焼現象解明の研究
Investigations of combustion phenomena under
extreme environmental conditions | 2017.4.19
Apr. 19, 2017 | | 菊川 豪太
Gota Kikugawa | 平成30年度·若手科学者賞
The Young Scientists' Award,
2018 | 有機分子修飾膜の分子構造に基づく界面熱輸送制御の研究
Study on control of interfacial heat transport based on
molecular-scale structure of organic surface modification | 2018.4.17
Apr. 17, 2018 | | 太田 信
Makoto Ohta | 平成31年度·科学技術賞(研究部門)
Awards for Science and Technology
(Research Category), 2019 | 生体組織モデル開発と医療機器の評価への応用に関する研究
Development of biomodel and study of application to
mechanical testing of medical devices | 2019.4.17
Apr. 17, 2019 | | 船本 健一
Kenichi Funamoto | 平成31年度·若手科学者賞
The Young Scientists' Award,
2019 | 流体情報学に基づく生体恒常性維持機構の解明に関する研究
Study for clarification of homeostasis mechanisms
based on fluid informatics | 2019.4.17
Apr. 17, 2019 | | 椋平 祐輔
Yusuke Mukuhira | 令和2年度·若手科学者賞
The Young Scientists' Award,
2020 | 地下開発時の誘発地震の発生機構解明と抑制技術に関する研究
Understanding and controlling the induced seismicity
associated with subsurface resource development | 2020.4.7
Apr. 7, 2020 | | 手塚 卓也
Takuya Tezuka | 令和2年度·研究支援賞
Outstanding Support for
Research Award, 2020 | 温度分布制御マイクロリアクタによる反応動力学研究への貢献 | 2020.4.7
Apr. 7, 2020 | | 岡島 淳之介
Junnosuke Okajima | 令和3年度·若手科学者賞
The Young Scientists' Award,
2021 | 微細管内の相変化熱流体現象による冷却機構とその応用の研究
Study on cooling mechanism of thermal fluid phenomena
with phase change in microchannel and its application | 2021.4.14
Apr. 14, 2021 | | 阿部 圭晃
Yoshiaki Abe | 令和4年度·若手科学者賞
The Young Scientists' Award,
2022 | 圧縮性流体の離散保存性を満たす高精度解析手法の研究
High-order compressible flow simulations with discrete
conservation properties | 2022.4.20
Apr. 20, 2022 | | 奥泉 寛之
Hiroyuki Okuizumi | 令和4年度·研究支援賞
Outstanding Support for
Research Award, 2022 | 磁力支持天秤装置による風洞実験高度化と施設共用化への貢
献 | 2022.4.20
Apr. 20, 2022 | | 燒野 藍子
Aiko Yakeno | 令和5年度·若手科学者賞
The Young Scientists' Award,
2023 | 高速輸送機器低抵抗化のための物体面近傍の流れに関する研究
Near-wall flow study for drag reduction of high-speed
transportation equipment | 2023.4.19
Apr. 19, 2023 | | 早川 晃弘
Akihiro Hayakawa | 令和6年度·若手科学者賞
The Young Scientists' Award,
2024 | カーボンニュートラルに向けた燃料アンモニアの燃焼科学研究
Combustion science study of fuel ammonia towards
carbon neutrality | 2024.4.17
Apr. 17, 2024 | #### その他 Others | 氏名
Name | 受賞名
Name of Award | 受賞対象の研究
Research | 受賞年月日
Date of Award | |----------------------------|---|---|----------------------------| | 阿部 圭晃
Yoshiaki Abe | 日本機械学会奨励賞(研究)
The Japan Society of
Mechanical Engineers, Young
Engineers Award | 圧縮性流体の離散保存性を満たす高精度解析手法とその応用
の研究
High-order compressible flow simulation with discrete
conservation properties | 2022.4.21
Apr. 21, 2022 | | 小林 秀昭
Hideaki Kobayashi | 2022年国際燃焼学会 Gold
Medal
2022 The Bernard Lewis Gold
Medal, The Combustion Institute | 高圧乱流燃焼およびアンモニア燃焼の卓越した研究
For brilliant research on high pressure turbulent
premixed flames and ammonia combustion for
decarbonization | 2022.8.11
Aug. 11, 2022 | | 氏名
Name | 受賞名
Name of Award | 受賞対象の研究
Research | 受賞年月日
Date of Award | |--|---|--|-------------------------------| | 石本 淳
Jun Ishimoto
仲野 是克
Yoshikatsu Nakano | 令和5年度日本鋳造工学会論文賞
Japan Foundry Engineering
Society, Best Paper Award 2023 | 混相流解析によるアルミニウム合金ダイカスト溶湯の微視的型内流れの可視化及び定量化
Microscopic visualization and quantification of molten aluminum alloy flow inside die cavity by multiphase flow analysis | 2023.5.20
May 20, 2023 | | Jean-Yves Cavaillé | 令和5年度外務大臣表彰
The Foreign Minister's
Commendations for FY 2023 | 日本とフランスとの科学技術協力の推進の功績
Promotion of scientific and technological cooperation
between Japan and France | 2023.8.22
Aug. 22, 2023 | | 内一 哲哉
Testuya Uchimoto | Applied Electromagnetics and
Mechanics Awards, International
Steering Committee of the
Symposium on Electromagnetics
and Mechanics (ISEM) | New electromagnetic nondestructive testing methods and applications for material damage evaluation | 2023.11.14
Nov. 14, 2023 | | 阿部 圭晃
Yoshiaki Abe | 2023年度日本流体力学会竜門賞
Award for Distinguished
Young Researcher in Fluid
Mechanics, 2023 | 移動変形を含む複雑形状周りの高次精度圧縮性流体解析のための保存型メトリクスとその応用に関する研究
Research on conservative metrics and their applications for high-order compressible flow analysis around complex geometries with deformation | 2023.12.15
Dec. 15, 2023 | | 小宮 敦樹
Atsuki Komiya | 2023年度日本伝熱学会学術賞
Scientific Contribution Award
of the Heat Transfer Society
of Japan, 2023 | 温度境界層共鳴効果を用いた自然対流伝熱促進に関する研究
A study of resonance-driven heat transfer
enhancement in a natural convection boundary layer | 2024.5.30
May 30, 2024 | | Surblys Donatas | 2023年度日本伝熱学会登鯉賞
Outstanding Young Researcher
Award of the Heat Transfer
Society of Japan, 2023 | 分子熱流体解析法の開発とナノスケール熱流動解析への応用
Development of molecular thermo-fluid analysis
methods and their application to the analysis of
nanoscale thermal flow | 2024.5.30
May 30, 2024 | | 椋平 祐輔
Yusuke Mukuhira | 2023年度岩の力学連合会論文賞
Japanese Society for Rock
Mechanics, Paper Award 2023 | Laboratory hydraulic shearing of granitic fractures with surface roughness under stress states of EGS: Permeability changes and energy balance | 2024.6.14
June 14,
2024 | | 石本 淳
Jun Ishimoto | 2023 Best Paper Award,
ASME Journal of Tribology | Computational fluid-structure interaction analysis of piston pin multiphase elastohydrodynamic lubrication with unsteady flow channel variation | 2024.9.4
Sep. 4, 2024 | | 石本 淳
Jun Ishimoto
仲野 是克
Yoshikatsu Nakano | 2023年度日本混相流学会論文賞
The Japanese Society
for
Multiphase flow, Best Paper
Award 2023 | 混相流体ー構造連成解析による相変化を伴う弾性流体潤滑現象の解明
Elucidation of elastohydrodynamic lubrication with phase change phenomena by multiphase | 2024.9.5
Sep. 5, 2024 | # プレスリリース #### Press Release | 氏名 | プレスリリース | 年月日 | |--|--|----------------------------| | Name | Press Release | Date | | 永井 大樹
Hiroki Nagai
伊神 翼
Tsubasa Ikami | 量子インスパイアード技術を用いた大量データのクラスタリング手法の開発
多様な分野における画像を含む時系列データの分析に利用 | 2024.1.11
Jan. 11, 2024 | | 椋平 祐輔 | 流体力学分野の信号処理技術で地震動の精密な評価に成功 | 2024.1.22 | | Yusuke Mukuhira | 惑星探査や資源開発など様々な分野への応用展開にも期待 | Jan. 22, 2024 | | 森井 雄飛 | 火炎と爆轟(ばくごう)を理論的につなぐことに成功 | 2024.2.25 | | Youhi Morii | 安定した超音速燃焼器の実用化に期待 | Feb. 25, 2024 | | 船本 健一 | 高血糖下の細胞研究は酸素濃度に要注意 | 2024.3.13 | | Kenichi Funamoto | 血管恒常性を左右する血管内皮細胞の環境応答の解明 | Mar. 13, 2024 | | 鈴木 杏奈 | 「マウス肺×ヒト細胞」ハイブリッド人工肺の移植術に世界で初めて成功 | 2024.4.5 | | Anna Suzuki | 移植可能なバイオ人工臓器作成に弾み | Apr. 5, 2024 | | 鈴木 杏奈 | 地熱エネルギーの資源量を機械学習で効率的に評価し将来予測する技術を開発 | 2024.4.9 | | Anna Suzuki | 一エネルギーの安定供給や地球温暖化対策に期待一 | Apr. 9, 2024 | | 大島 逸平
Ippei Oshima | ガスタービンにおける液体燃料の微粒化機構を解明し数理モデルを開発 $-CO_2$ ·NOX排出量をさらに減らす次世代燃焼器開発での利用に期待 $-$ | 2024.4.25
Apr. 25, 2024 | | 馬渕 拓哉
Takuya Mabuchi | $100 \mu \mathrm{M}$ の高濃度条件でタンパク質フォールディングを促進する低分子化合物の開発に成功 一「寛容的」な基質認識が可能にする、タンパク質製剤の合成効率向上と認知症などの変性 疾患治療への技術基盤一 | 2024.7.30
July 30, 2024 | | 馬渕 拓哉
Takuya Mabuchi | 単一生体分子の温度による微細な構造変化を解析する新たな一分子計測技術を開発 | 2024.8.26
Aug. 26, 2024 | | 中村 寿 | 水素火炎からの発光でアンモニアの燃焼効率が大幅に向上することを実証 | 2024.9.20 | | Hisahi Nakamura | 一二酸化炭素を出さないアンモニア直接燃焼の実用化に大きく前進一 | Sep. 20, 2024 | | 小宮 敦樹 | 微小水流が新たなエネルギー源に | 2024.11.1 | | Atsuki Komiya | 注目材料グラフェンと水流を活用した環境発電システムの可能性 | Nov. 1, 2024 | # 主な出版物 #### **Publications** ## ■ 報告書/Reports 研究活動報告書 Report of Research Activities 流体科学研究所報告(日本語·英語) Reports of the Institute of Fluid Science (Japanese · English) 共同利用·共同研究拠点活動報告書 Activity Report, Joint Usage / Research Center 高度流体情報に関する国際シンポジウ ム会議録 Proceedings of the International Symposium on Advanced Fluid Information 次世代融合研究システム (スーパーコンピュータ) 利用研究成果報告書 Use Reports of Integrated Supercomputation System i.e. Supercomputer Report of Technical Services Division Post Conference Report ICFD2024 ## ■ パンフレット / Leaflet/Catalog 流体科学研究所概要パンフレット (日本語・英語) Institute of Fluid Science Leaflet (Japanese・English) 流体科学研究所要覧 Institute of Fluid Science Catalog 未来流体情報創造センター(日本語・英語) Advanced Fluid Information Research Center 次世代流動実験研究センター Advanced Flow Experimental Research Center リヨンセンター Lyon Center 流体科学支援基金 Institute of Fluid Science Fund ### **■ 図書室** / Library 流体科学に関する学理および応用の研究に必須な書籍・雑誌の収集に努めています。さらに本学図書館情報処理ネットワークシステム(T-lines)に参加して、本学における流体関連分野の貴重なデータバンクの役割を果たしています。 This library has an extensive collection of books and journals that are essential for research on fluid engineering and science. Furthermore, it participates in the Tohoku University Library Information Net-work System (T-lines) and maintains a critical data bank on fiuid flow related literature. ## ■ 流体科学研究所の展示スペース/ IFS Exhibition Space ### ■ 工場 / Workshop 流体科学研究所附属工場は、本研究所の前身である高速力学研究所の設立と同時に設置されました。設置当初より流体科学の基礎研究に関わる実験装置だけでなくエネルギー、航空宇宙、ライフサイエンス、ナノ・マイクロテクノロジー分野など様々な流動現象の実験・研究を行う上で必要な実験装置や試験片などを設計・ 製作しています。本工 場で製作された実験装 置を用いた実験研究か ら文化功労者が輩出さ れるなど、研究所の研 究活動の一翼を担って います。 The Institute of Fluid Science Workshop was established at the same time as the Institute of High-Speed Mechanics, which was the forerunner of the present Institute of Fluid Science. Since its establishment, this workshop has designed and fabricated experimental equipment and test specimens not only for basic research in fluid science, but also for research and experiments on fiuid flow phenomena in other fields, such as energy, aerospace, life sciences, and nano-micro technology. This workshop provides essential support to the research activities of the Institute, and one scientist using experimental equipment fabricated here has gone on to be named a Person of Cultural Merit by the Japanese government. ## ■ 沼知文庫/Numachi Library ## ■ 東北大学の位置 / Location of Tohoku University #### アクセス/ Access JR仙台駅より徒歩20分。仙台空港からJR仙台駅まで鉄道で25分。 20 mins on foot from JR Sendai Station to the Institute of Fluid Science, Tohoku University, Katahira, Sendai. 25 mins by train from Sendai Airport to JR Sendai Station. - ①1号館 Building No.1 - ②2号館 Building No.2 - ③3号館 Building No.3 - ④流動ダイナミクス棟 Flow Dynamics Building - ⑤ジョイントラボ棟 Joint Laboratory Building - ⑥高速流実験棟 High Speed Flow **Experiment Building** - ⑦流体制御実験棟 Fluid Control Experiment Building - ⑧超音速燃焼実験棟 Supersonic Combustion Experiment Building - ⑨低乱風洞実験棟 Low Turbulence Wind Tunnel Building - ⑩未来流体情報創造センター Advance Fluid Information Research Center Building - ⑪衝擊波学際応用実験棟 Interdisciplinary Shock Wave Research Building ## ■ 流体科学研究所公式キャラクター/ Official Mascot Character of IFS ### 東北大学 流体科学研究所 〒 980-8577 宮城県仙台市青葉区片平 2-1-1 TEL: 022-217-5302 / FAX: 022-217-5311 URL: https://www.ifs.tohoku.ac.jp/jpn/ ## Institute of Fluid Science, Tohoku University 2-1-1 Katahira Aoba-ku Sendai, 980-8577, Japan TEL: +81-22-217-5302 / FAX: +81-22-217-5311 URL: https://www.ifs.tohoku.ac.jp/eng/ YouTube Facebook X (旧 Twitter)