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Abstract. The paper summarizes results of previous theoretical studies on the shock
wave reflection from the axis of symmetry and illustrates them using high-resolution
numerical modelling based on the Euler-equations/perfect-gas assumption. It is con-
firmed, for both steady and moving shock waves, that only a Mach reflection can exist
at the axis of symmetry, although the size of its Mach disk may be very small. Numer-
ical convergence studies support the physical feasibility of highly curved Mach disks.
However, it is shown that in some cases they are really numerical artefacts.

1 Introduction

Shock wave interaction with the axis of symmetry is a basic problem which has
been studied at least since the 1940’s. Possible practical applications include
explosions and implosions, axisymmetric nozzle flows, and scramjet engine in-
lets. The problem is rather well elaborated theoretically. However, the results
are scattered over a number of small circulation publications. Moreover, the the-
oretical conclusion on the impossibility of regular reflections from the axis of
symmetry looks, at first glance, somewhat puzzling in view of experimental and
numerical findings with seemingly regular shock reflections. As a result, in text-
books and monographs the issue is either missed altogether, or presented incom-
pletely/unclearly, or even interpreted erroneously. The present paper is intended
as a summary of theoretical works on the subject, illustrated by high-resolution
numerical simulations. The Euler-equations/perfect-gas model embodied in the
locally adaptive unstructured code [1] has been adopted because it is the sim-
plest possible one to begin with and at the same time all theoretical studies are
based upon it.

2 Steady Reflections

In 1948 Courant and Friedrichs [2] put forward their famous theoretical con-
clusion, based on velocity hodograph considerations, that, in steady flow, an
incident conical shock, followed by a reflected conical shock with an intervening
conical flowfield, cannot exist at the axis of symmetry and that a Mach reflection
would have to occur. However, experiments and numerical studies, particularly
with weak converging shocks, have produced images of shock patterns, in the
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vicinity of the axis of symmetry, with seemingly regular shock reflections. The
obvious contradiction has been attributed, first of all by Courant and Friedrichs
themselves, to the existence of a Mach disk that is “too small to be seen”.
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Fig. 1. Steady reflections in internal flows. (a) Schematics of the ICFA flow. (b-d)
Numerical results (density contours) for the freestream Mach number M = 3 and
the incident shock angle @ = 30° (y = 1.4): (b) Plane flow, the wedge angle 8 =
12.7735°%; (¢) Axisymmetrical flow, the geometry is the same as for the case (b); (d)
Axisymmetrical flow with the ICFA ring body designed to produce the same incident
shock angle 30°

Taking a different point of view, it was suggested in [3-5] to consider a conical
shock impinging on the axis (see Fig. 1a) and to try constructing a conical (i.e.
depending only on the polar angle ) flow downstream of it. Such a flow can be
formally obtained right down to a singular line (Fig. 1a) at which derivatives
of some physical variables with respect to the polar angle tend to infinity and
further conical flow is impossible. Any streamline of the conical, self-similar flow
(the Internal Conical Flow A — ICFA, according to [4]) can be declared to be
a body surface — the ICFA body. However detailed analysis of the flowfield [5]
reveals that conical flow is physically feasible only within the area shaded in
Fig. 1a and bounded by the incident conical shock, the ICFA body and the C_
characteristic arriving at the trailing edge of the ICFA body and being tangential
there to the singular line. The C_ characteristic intersects the incident shock at
a point which is called the Rylov point in the present paper. Downstream of
the Rylov point, the ICFA body is no longer able to influence and straighten
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the incident shock and, due to converging geometry, the shock is amplified and
steepened towards the axis so that eventually a Mach reflection takes place there.
To verify the above findings numerically, we consider a combination of shock
angle and freestream Mach number which puts a triple-shock solution beyond
the von Neumann point, where a regular reflection would occur for the plane
flow case (Fig. 1b). In axisymmetric flow this combination of Mach number and
shock angle is produced at the leading edge of an axisymmetric wedge-ring.
However, in progressing towards the axis of symmetry, the shock steepens to
the von Neumann point and Mach reflection ensues (Fig. 1c). By replacing the
wedge-ring with the ICFA-profiled ring body we are able to sustain the straight
conical shock from the leading edge till the radius equal to ~ 0.4R;, (the Rylov
point), where Ry, is the leading edge radius (Fig. 1d). The value agrees quite well
with the theoretical prediction (0.386.R;.). Numerical simulations using the Euler
code as well as the method of characteristics show that beyond that point it is
impossible to keep the shock straight. Even applying the highest possible rate of
downstream expansion with a centered Prandtl-Meyer fan at the trailing edge of
the ICFA surface, we cannot prevent the increase of shock intensity and incident
angle and consequent Mach reflection. The relatively high incident shock angle
30° was chosen for the sake of faster computations and easier presentation. In [6]
we have computed the ICFA flow with the freestream Mach number M = 8.33
and shock incident angle as low as a = 9.5° where the straight shock portion
extended to 0.163R;, and then exhibited irregular reflection even for such a low
initial incident angle. In this case, the size of the Mach disk was indeed very
small (~ 1.2-107%R,,). This seems reasonable since a longer relative distance is
needed for the initially low incident angle to exceed the von Neumann value.

3 Unsteady Reflections

Let us first consider the case of an axisymmetrical shock wave (for instance,
a toroidal shock wave, see Fig. 2) approaching the axis with seemingly zero
angle of incidence, where one might most likely expect a regular reflection pat-
tern. Sokolov, in [7] suggested a gasdynamical mechanism which always leads to
Mach reflection at the axis of symmetry during an unsteady reflection process.
The explanation suggests the amplification and acceleration of a shock wave,
approaching the axis of symmetry. As a result, shock wave front segments closer
to the axis are more intense and move faster than those away from it, resulting in
a steepening of the shock’s incident angle. At any given finite distance from the
cumulation point the shock angle exceeds the transition angle. The curvatures
of the incident shock at the triple point and far away are of different sign. A
point of zero curvature exists somewhere in between: Fig. 2 shows that in grossly
exaggerated manner. In reality, the variation of curvature takes place gradually
over a long axial distance, so that it is difficult to resolve it numerically. The
Mach disk radius r,, vs. the axial coordinate z is given by
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where R, is a constant having the dimension of length; a — the angle of inci-
dence. The power coefficient n is & 5.1 for v = 1.4 — that is why the numerical
confirmation via a grid convergence study requires successive grid refinement in
about 32(!) times (not in two times as it is usually done). Our previous attempt
([8]) was incomplete because of insufficient resolution of structured non-adaptive
numerical codes on hand at that time, although it clearly demonstrated that a
finer mesh leads to earlier detection of the Mach disk.
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Fig. 2. Schematics of the toroidal shock

wave reflection from the axis of symme-
try (z-axis). A cross-section of the ini-
tial energy deposition volume as well as
shock fronts before and after reflection
are shown. Dashed line depicts the triple
point trajectory

Fig.3. Toroidal shock wave reflection
from the axis of symmetry: Mach disk
radius vs. the distance along the axis
from the cumulation point for different
minimum grid spacings. All quantities
are non-dimensionalized with the large

toroidal radius R

The present numerical simulations (Figs. 3,4) were performed with the back-
ground grid step =~ 0.05R (R is the large radius of the initial toroidal pressurized
volume while its small radius is ;) and 5, 10, or 15 levels of grid refinement ap-
plied near the axis of symmetry (as soon as Mach disk radius became larger
than 50 cells of a certain refinement level, the level was removed). Figure 4a
shows the amplification and acceleration of the incident shock near the axis just
before the cumulation moment. Due to inherently finite grid resolution of shock-
capturing techniques, on any grid we have seemingly regular reflection at early
stages (Fig. 4b). However, the substantial increase of the incident angle close
to the symmetry axis and the above-mentioned variation of curvature is very
clearly resolved in Fig. 4b, with the zero curvature point being far beyond the
right margin of the figure. Eventually Mach reflection appears (Fig. 4c). Fig-
ure 3 proves that to resolve the Mach disk two times closer to the cumulation
point, about 32 times finer mesh is needed. Once having appeared, the Mach
disk initially grows very fast until it reaches a proper (grid-independent) value
corresponding to the particular distance.

The above unsteady results deal with an axysymmetric shock wave impinging
on the symmetry axis at seemingly zero incident angle (quite frequent case in
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Fig. 4. Toroidal shock reflection from the axis of symmetry (pressure (a) and density
(b, ¢) contours in cross-sections are shown): (a) the computational domain is bounded
by the axis of symmetry (lower horizontal line), the plane of symmetry (vertical line)
and a cylindrical wall (upper horizontal line), in order not to consider outgoing waves;
a moment prior to cumulation; (b) a typical regular reflection pattern at an early stage
of reflection; (c¢) a typical Mach reflection pattern developed later. Initial parameters
of the explosion: p2/p1 = 50, p2/p1 =10, rs/R = 0.2

practice). If we launch a shock towards the axis at a finite angle (Fig. 5a),
the physical situation is more transparent. Different segments of the shock move
with different speed, so that the incident angle increases, exceeding the transition
value (see Fig. 5b, which is an unsteady analog of Fig. 1c), resulting immediately
in Mach reflection (Fig. 5c,d).

a b c

Fig. 5. The reflection of an initially plane (conical) axisymmetrical shock front (M = 3,
a = 25°) from the axis of symmetry (lower horizontal line); density contours are shown:
(a) initial condition, inclined lines are conical walls; a moment just before (b) and after
(c) reflection; (d) enlargement of image (c) near the reflection point

During the last decade many researchers reported that in both steady and
unsteady flows the Mach reflection patterns at the axis of symmetry can be
of complex structure, with a highly curved Mach disk, additional triple point,
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Fig. 6. Toroidal shock reflection from the axis of symmetry: shock pattern for 0.83 <
z/R < 115, 0 < r/R < 0.21 obtained with 5 (a), 10 (b) and 15 (c¢) levels of grid
refinement near the cumulation point (see also Fig. 3)

Fig. 7. Toroidal shock reflection from the axis of symmetry: shock pattern for 0.19874 <
z/R < 0.23164, 0 < r/R < 0.065 obtained with 5 (a), 10 (b) and 15 (c) levels of grid
refinement near the cumulation point (see also Fig. 3)

axial jet and toroidal vortex (Fig. 6). However, experimental confirmation has
not been achieved so far. In our review, [9], we even considered the possibility
of the phenomena being numerical artefacts. In a more recent study [10] the
problem was investigated in a self-similar formulation; the domains of existence
for different types of the bulged Mach configuration were established. The very
self-similarity of the phenomenon supports its possible physical existence. The
present computation with 15 refinement levels shows that the phenomenon is
indeed unlikely related to some numerical effects near the cumulation point:
the Mach disk emerges as a plane one (Fig. 4c) and remains plane for a rather
long time while growing a few hundreds of finest cells heights; only later, under a
certain combination of incident Mach number and angle, which seems to be close
to self-similar predictions in [10], does the bulging disk appear. Figure 6 shows
the results of grid convergence study: the overall structure is very much the
same, so that it seems to be physically feasible. However, finer meshes result in
more protruding Mach disks, not exhibiting grid convergence for this particular
feature. This suggests stronger axial jets which may result from deficiencies of the
Euler model not taking into account dissipative and real gas effects which could
be important at high pressures and temperatures near the cumulation point
and the axis. Figure 7 corresponds to an area closer to the cumulation point, for
which the intermediate mesh produces a curved Mach disk (Fig 7b) disappearing
upon further grid refinement (Fig. 7c). We note that Fig. 7b corresponds to the
stage of fast growth of Mach disk, which is as aphysical as the preceding stage
of ‘regular’ reflection (Fig. 3).
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4 Conclusion

The Euler-equations/perfect-gas model for both steady and unsteady flow pre-
dicts an irregular Mach reflection configuration for shock waves reflecting from
the axis of symmetry. In all cases the incident wave angle steepens toward the
axis so as to exceed the von Neumann angle at the triple point. The Mach disk
may indeed be very small as compared to the characteristic scale of the problem
under study and, thus, invisible on experimental photos or images resulting from
low resolution numerical computations.

Although the employed model does not contain any length scales, it is worth
to provide some estimates for a laboratory-scale experiment. Assuming that
R =10 cm for the toroidal explosion, the Mach disk radius, at z < 3 c¢m, is less
than 1 mm (a visibility threshold for optical visualizations). It is less than 1 ym
for z < 0.8 cm. At these distances, when the radius becomes comparable with
the shock thickness, the continuum model is not valid any longer.

Caution should be exercised when interpreting results with a highly curved
Mach disk because the Euler model may not provide quantitative agreement
with possible future experimental findings, since it predicts unphysically high,
grid-dependent pressure and temperature values near the cumulation point and
axis of symmetry and, as a consequence, more intense axial jets and vortexes.
Moreover, it has been shown that in some cases the curved Mach disks disappear
when finer mesh is used.
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