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Abstract. A 2D numerical model to simulate elastic waves in solids and liquids has
been developed and thoroughly tested. The equations of motion are written in terms
of stresses, displacements and displacement velocities for control volumes constructed
about the nodes of a triangular unstructured grid. Theoretical dispersion for zero mode
symmetric (Sp) and antisymmetric (Ag) Lamb waves in a plate has been reproduced
numerically with high accuracy. Comparison of simulated acoustic pulse scattering at
water-immersed steel plate with the respective experiment reveals a very good agree-
ment in such delicate features as excitation of the surface wave (A4). An example of
acoustic pulse interaction with a curvilinear metallic shell in water demonstrates flex-
ibility of the method with respect to complex geometries.

1 Introduction

The aim of the present work is to develop a numerical tool based directly on
the equation of motion and capable of simulating propagation of acoustic pulses
through essentially inhomogeneous elastic media including solids and liquids. At
this stage, we confine ourselves to two spatial dimensions. The equation of motion
written in displacements/stresses terms is selected to obtain a highly universal
method easily allowing further upgrades to incorporate various kinds of non-
linearities in the displacement-stress relations. The unstructured grid system
based on triangular area elements has been adopted for domain discretization to
allow highest flexibility in description of various geometries of interest including
internal boundaries separating sub-domains with different elastic properties.

2 Numerical Method

The equations of motion of a volume V bounded by surface S, with no volume
forces applied, can be written in the most general integral form as follows ([1]):
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U; being Cartesian projections of the displacement vector U, p — density, oy, —
components of the stress tensor, and n,, — Cartesian projections of the outward
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normal n to the surface S (i.e. in two dimensions I = z,y and m = z,y; sum-
mation over m is assumed). In an isotropic elastic medium under small strain,
the components of the stress tensor depend linearly on deformation:
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Here p and A are the Lamé constants which depend on the elastic properties: K
being the modulus of compression, and v — Poisson’s ratio (0 < v < 1/2). The
above formulas are universally valid for both elastic solids and liquids (assuming
negligible convection). The latter are presented by v = 1/2, K = poci, where pg
is liquid’s density and ¢y — the sound speed, so that g =0 and A = poc3 /3.
The unstructured grid generator [2] has been used in this work to generate
the grid composed of triangular area elements for a given computational do-
main in 2-D. It automatically inserts nodes and triangulates a set of adjoined
sub-domains ensuring exact matching of nodes in the resulting sub-grids at the
internal boundaries to facilitate setting up proper internal boundary conditions.
The grid generation can be performed either for a set of uniformly distributed

Fig.1. Simple grid for two Fig.2. (a) Control volumes about internal and bo-
sub-domains with matching undary nodes; the interface between neighbor nodes
nodes at internal boundaries ¢ and j is shown in bold line. (b) “Twin” nodes at

an internal boundary between sub-domains a and b.

nodes or by incremental insertion of new nodes until the maximum grid spacing
meets the prescribed value. A version of the algorithm [3] has been employed
with subsequent iterative improvement of grid quality by stretching and swap-
ping of edges. An example of a simple grid for two sub-domains with curvilinear
internal boundaries is presented in Fig. 1 (actual grids typically contain many
more nodes). The node-centered technique for establishing control volumes has
been selected. The dual grid of control volumes is created by connecting trian-
gles’ centroids with the centers of their edges (Fig. 2a).

The numerical scheme is based on equations (1) written for the control vol-
umes (Fig. 2a). The Cartesian projections of displacements (U, U,) and dis-
placement velocities (Uw , Uy) are given for the time moment " at grid nodes.
To advance the solution one time step At, first, derivatives U, /0z, 8U, /0,
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oU, /8y, 8U, [0y, are computed by Lagrange interpolation for every grid triangle
using predicted values for displacements at time $*+1/2 = ¢ + At/2

UL\ "1/ n+1/2 n+1/2 n+1/2 n+1/2
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where D = (z; — ;) (yp —v:) — (y; — ¥ ) (T — 24), Ugtl/2 =U",+0.5 At U? ,, and
a = z,y. Components of the stress tensor o’y /2, ol 12 ol 1/2 are computed
then according to equations (2) for every grid triangle.

Assuming uniform stress values within a grid triangle, equations (1) can be
used in the following discrete form to calculate accelerations of grid nodes:

(T2t =02 Vi pi = At 000 AS, + 0ay AS) 3)
Si

where summation is performed over all the surface segments of control volume
i. Finally, new displacements at time ¢! can be computed for the grid nodes:

Urtt =ur, + At UM (4)

In all practical computations, the described explicit scheme was found condi-
tionally stable in accordance with the CFL criterion.

The following two types of boundary conditions can be directly applied within
the described simulation algorithm at the external boundaries of a computational
domain: the displacement velocities or surface forces can be given as functions of
time at boundary nodes or boundary surface segments, respectively. The bound-
ary displacement velocities are substituted into equations (4), while the surface
forces are used at the surface segments of control volumes in (3). A stress-free
surface, for example, is simulated by applying zero surface forces at its bound-
ary segments, while zero normal displacements and displacement velocities cor-
respond to the slip condition at an absolutely rigid wall or symmetry plane.
The internal boundaries between sub-domains in contact represent a special
case. A wide variety of boundary conditions can be set up there, including the
non-slip or slip ones with or without friction, a gap opening etc. To support var-
ious boundary conditions at the internal boundaries in the described numerical
model, matching (“twin”) nodes are used at the common sub-domains’ borders
(Fig. 1): a node i, at the internal boundary of sub-domain a in contact with
sub-domain b has a respective matching node 4 of sub-domain b (Fig. 2b).

In the following examples of solid plates and shells in liquid, the “twin” nodes
were processed to simulate the inviscid slip boundary condition. It has been
achieved by setting up zero friction forces at the boundary and by equalizing
displacements and displacement velocities in the normal direction. The resulting
averaged normal displacements and displacement velocities Ny)sp) at “twin”
nodes i, and 7, accumulate preliminary computed individual values N;, and
Ny as follows: Nyy iy ( [ pa dv+ [ pp dv) = Nyoy [ pa dv+ Nyy [ pp dov .
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3 Lamb Waves in a Plate

Elastic waves in a plate in vacuum under periodic harmonic excitation have
been selected as a primary test case for the developed method and code. Ex-
amples of waves in a plate under uniform harmonic longitudinal and transversal
excitation at the left hand side are presented in Fig. 3a,b in the form of com-
pression diagrams, i.e. negative values of o, + oy, are given in dark gray and
black (compression), while positive values — in light gray and white (decompres-
sion). Each figure presents the same two successive moments in time after the
excitation started. Normal displacements of the upper and lower surfaces are
shown exaggerated enormously for demonstration. Different modes of waves can
be seen in either case propagating at different speeds along the plate. Results
presented in Fig. 3a and b correspond to identical dimensionless excitation fre-
quency (wh)/(wCr) = 0.4, 2h being the plate thickness and Cp, — velocity of
the longitudinal wave. The dominant waves seen in the figures are the lowest
symmetric (Sp in Fig. 3a) and the lowest antisymmetric (4 in Fig. 3b) Lamb
waves. One can note higher phase velocity of Sy compared to Ag, as longer waves
are generated in the former case. On the contrary, the group velocity is higher
for Ag, so that the periodic wave pattern advances faster in this case resulting
in considerably larger number of periods observed at a certain moment after the
onset of excitation. In both cases, the compression/decompression pattern at the
latter time moment is spoiled by the effect of reflection at the right-hand side
of the plate. The observed relations between the wave’s velocities are consistent
with the theory [1].

Simulations have been performed for a wide range of excitation parameters
using a rather coarse grid containing only 10 internal nodes across the plate.
Propagation velocities for Sy, Ag, longitudinal, transversal and Rayleigh waves
extracted from the numerical solutions for a steel plate (p = 7.9 - 10® kg/m?,
o = 0.29, C, = 5790 m/s) along with the theoretical dispersion curves for Sy,
Ap are presented in Fig. 4. The longitudinal waves were simulated by uniform
longitudinal (z-direction) excitation and zero normal displacements set up at
the upper and lower boundaries. Transversal (y-direction) excitation and zero
tangential displacements at the plate upper and lower boundaries were used for
the transversal (shear) wave. The stress-free boundary conditions together with
longitudinal or transversal excitation were used to observe symmetric (S,,) or
antisymmetric (4,) waves respectively. The quasi-Rayleigh waves appeared in
the solution at high excitation frequencies as stable wave patterns in surface
displacements whose shape did not vary essentially with propagation. Different
symbols in the plot correspond to different modes of data processing. Position of
the leading signal at a fixed time can be used to determine phase/group velocity
of non-dispersive waves (squares). Two major methods applicable to all types of
waves are based on measuring the wave length at a given time moment (triangles)
or the slope of wave patterns on the displacement carpet diagrams (circles).
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Fig. 3. Compression diagrams for com-
puted symmetric (a) and antisymmetric
(b) waves in elastic plate by uniform har-
monic longitudinal (a) and transversal
(b) excitation at the left-hand side. Sur-
face displacements shown amplified for vi-
sualization.
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Fig. 4. Computed phase velocities (sym-
bols) for So and Ao Lamb waves, quasi-
Rayleigh (Cr; diamonds) waves, longitu-
dinal (Cr) and transversal (Cr) waves
in a steel plate versus theory ([1,4]; solid
lines). Dashed lines indicate exact values
of CL, CT, and CR.

4 Steel Plate in Water

If a plate or shell is submerged in liquid, then waves propagating in the solid
radiate into the surrounding medium. In addition to the regular compression
waves propagating through the liquid at the sound speed Cy, an inhomogeneous
surface wave A (the Scholte-Stoneley wave) can be observed in some cases prop-
agating in the liquid close to the solid surface at a speed somewhat less than Cy.
An example of experimental observation of this wave is given in Fig. 5 as a shad-
owgraph of waves in water close to the surface of a steel shell after excitation
by an acoustic pulse. First, the surface wave in water appears as a distortion
in waves radiated by Ag in the shell (Fig. 5, top). Later on, the surface wave
becomes more distinctive (Fig. 5, bottom).

Our numerical simulation was performed for a steel plate in contact with
water. The grid contained two sub-domains representing the plate and the wa-
ter volume. A sharp variation in normal displacements was applied at a small
area, of the water-solid boundary close to the plate’s end to excite waves in the
plate. Fig. 6 presents some results as compression diagrams (dark regions cor-
responding to higher pressure) for a few successive time moments. Formation
of the surface wave in water (Sholte-Stoneley, A wave) can be seen in its de-
velopment. Sy and Ay waves propagate along the plate and radiate into water.
The radiation pattern for Ay wave looks very similar to that in the experiment
(Fig. 5; radiation by Sp is out of the view field). The leading signal related
to Ag propagates at a constant speed which corresponds to the group velocity
and is essentially higher than the sound speed in water. As a result, the front
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of disturbances in water produced by Ag is straight. A 90° phase shift can be
observed between the compression extrema, in plate and in water, as maximum
compression at the upper plate’s surface corresponds to the maximal negative
displacement (see Fig. 3b), while due to the supersonic propagation velocity rel-
ative to Cp, maximum compression in water is generated by maximum variation
in the displacement. The propagation velocity of Ay decreases continuously due
to dispersion, so that radiated waves become curved. The phase shift for slower
waves diminishes. At a certain moment, the propagation speed of the rear part
of Ay with largest wave length equalizes with the sound speed in water. The
phase shift between the compression extrema, in water and plate vanishes. While
decreasing further, the speed of Ay becomes equal to that of the surface wave
A in water, at which point a part of early radiated waves start propagating in
a new mode involving the underlying elastic solid. A sharp phase shift arises
consequently in the compression field in water.

Fig. 5. Scholte-Stoneley wave in water Fig. 6. Simulated radiation into water by
near a steel shell hit by an acoustic Sp (1) and Ao (2) in a steel plate and emerg-
pulse. 1 — the incident wave, 2 — waves ing of surface wave A (3). Sequential com-
radiated by Ao in the shell, 3 — the pression diagrams for the whole computa-
Scholte-Stoneley (A) wave in water. tional domain (a — ¢) and a detail (d).

5 Cylindric Shell in Water

Experiments and some theory on the scattering of a short acoustic pulse at
cylindrical shells in water have been reported by [5]. A typical shadowgraph
from these experiments for an empty steel shell with the inner-to-outer radius
ratio of 0.94 is presented in Fig. 7a. The two kind of waves in the shell traveling
ahead of the incident pulse and radiating into water have been identified as zero
mode symmetric (Sp) and antisymmetric (Ag) Lamb waves. A computational
grid similar to that shown in Fig. 1 but with much finer spacing (= 78, 000 total
nodes) has been used in computations. A snapshot of the numerical result in a
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Fig. 7. Experimental [5] and computational shadowgraph of waves in water around
an empty cylindrical shell by impulsive acoustic loading; 1 — incident pulse wave, 2 —
reflected wave, 3 — radiation by Sp in the shell, 4 — radiation by Ao in the shell.

form of computer-generated shadowgraph is given in Fig. 7b. The waves radiated
into water by the Lamb waves in the shell appear well captured (compare Fig. 7a
and Fig. 7b). Oscillations of numerical nature are seen behind the incident and
reflected wave fronts in water. The high-frequency numerical noise behind the
reflected wave has a very small amplitude and becomes visible due to the post-
processing technique sensitive to the second derivatives of the solution.

6 Conclusion

A numerical technique based on the direct application of the equations of mo-
tion, written in a general integral form in terms of stresses, displacements and
displacement velocities, to control volumes constructed about the nodes of a
triangular unstructured grid, has been developed and thoroughly tested against
theory and experimental data. A good agreement with the experiment has been
achieved for a pulse wave scattering at the water-immersed steel shell. Excita-
tion of the Scholte-Stoneley surface wave via the waves radiated into water by
the dispersive lowest antisymmetric Lamb wave (4p) in a steel plate has been
observed and analyzed in detail, explaining the experimental data.
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