get_aitkendisp module
Modules for calculating aitkens displacement.
Revision: 1.0.0 $Date: 24/01/2023 16:26$
History
1.0.0 - Initial Module Creation
Todo
This function should be generalized for any physical values.
- get_aitkendisp.main()[source]
main sequence
\begin{gather}\label{eq:displacement_relax} \pmb{u}^{k+1}_\mathrm{s} = \omega^{k+1} \tilde{\pmb{u}}^{k+1}_\mathrm{s} + (1 - \omega^{k+1}) \pmb{u}^{k}_\mathrm{s}, \end{gather}\begin{gather}\label{eq:aitken_relaxation} \omega^{k+1} = \omega^{k} \left( 1 - \dfrac{(\Delta \tilde{\pmb{u}}^{k+1}_\mathrm{s} - \Delta \tilde{\pmb{u}}^{k}_\mathrm{s})^T \Delta \tilde{\pmb{u}}^{k}_\mathrm{s}} {(\Delta \tilde{\pmb{u}}^{k+1}_\mathrm{s} - \Delta \tilde{\pmb{u}}^{k}_\mathrm{s})^T (\Delta \tilde{\pmb{u}}^{k+1}_\mathrm{s} - \Delta \tilde{\pmb{u}}^{k}_\mathrm{s})} \right). \end{gather}where,
\begin{gather}\label{eq:delta_u} \Delta \tilde{\pmb{u}}^{k+1}_\mathrm{s} = \tilde{\pmb{u}}^{k+1}_\mathrm{s} - \pmb{u}^{k}_\mathrm{s}, \end{gather}- Procedure:
read displacement of previous and currenct step. \(\pmb{u}^{k}_\mathrm{s},~\tilde{\pmb{u}}^{k+1}_\mathrm{s}\)
read increment of displacement from preprevious step to previsous step. \(\Delta \tilde{\pmb{u}}^{k}_\mathrm{s}\)
read relaxation parameter in previous step. \(\omega^{k}\)
calculate increment of displacement from previous step to current step. \(\Delta \tilde{\pmb{u}}^{k+1}_\mathrm{s}\)
update relaxation parameter. \(\omega^{k+1}\)
update displacement. \(\pmb{u}^{k+1}_\mathrm{s}\)
- Input files:
‘dispStruct_fem.dat’: displacement from FEM in the current step.
‘dispStruct_pre.dat’: displacement in the previous step after relaxation.
‘dispStructInc_pre.dat’: increment of displacement from preprevious step to previous step.
‘theta_pre.dat’: relaxation parameter in the previsous step.
- Output files:
‘dispStructInc.dat’: increment of displacement from previous step to current step.
‘theta.dat’: relaxation parameter in the current step.
‘dispStruct.dat’: displacement after relaxatino in the current step.
- Parameters
None –
- Returns
None
Documentation last updated: Jan. 24, 2023 - Shugo Date